Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2008_15_4_a6, author = {M. V. Nevskij}, title = {On the equivalence constants for some norms on the spaces of algebraic polynomials}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {65--80}, publisher = {mathdoc}, volume = {15}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a6/} }
TY - JOUR AU - M. V. Nevskij TI - On the equivalence constants for some norms on the spaces of algebraic polynomials JO - Modelirovanie i analiz informacionnyh sistem PY - 2008 SP - 65 EP - 80 VL - 15 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a6/ LA - ru ID - MAIS_2008_15_4_a6 ER -
M. V. Nevskij. On the equivalence constants for some norms on the spaces of algebraic polynomials. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 4, pp. 65-80. http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a6/
[1] V. K. Dzyadyk, Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977, 512 pp. | MR | Zbl
[2] A. A. Kipillov, A. D. Gvishiani, Teopemy i zadachi funktsionalnogo analiza, Nauka, M., 1979, 384 pp. | MR
[3] M. V. Nevskii, Ob interpolyatsii funktsii $n$ peremennykh s pomoschyu lineinykh kombinatsii $1,x_i,x_ix_j$ $(i)$, Dep. v VINITI 28.02.2005, No 275-B2005, Yaposlavl, 2005, 12 pp.
[4] M. V. Nevskii, O konstantakh v neravenstvakh dlya ekvivalentnykh norm nekotorykh mnogochlenov ot $n$ peremennykh, Dep. v VINITI 28.02.2005, No 274-B2005, Yaposlavl, 2005, 16 pp.
[5] M. V. Nevskii, “Nepavenstva dlya nopm ppoektopov ppi inteppolyatsii po vepshinam $n$-mepnogo kuba”, Matematika v Yaposlavskom univepsitete, Sbopnik obzopnykh statei: K 30-letiyu matematicheskogo fakulteta, Yaposlavl, 2006, 307–330
[6] M. V. Nevskii, “Neravenstva dlya norm interpolyatsionnykh proektorov”, Modelipovanie i analiz infopmatsionnykh sistem, 15:3 (2008), 28–37
[7] A. F. Timan, Teopiya priblizheniya funktsii deistvitelnogo peremennogo, Gos. izd-vo fiz.-mat. lit., M., 1960, 624 pp.
[8] T. J. Rivlin, Chebyshev polynomials, John Wiley Sons, New York, 1990, 249 pp. | MR | Zbl