Finite automorphism groups of Petri Nets
Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 4, pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of isomorphism and automorphism for labeled transition systems are defined, in particular monotonic isomorphism and automorphism – for well structured transition systems. It is shown, that any automorphism corresponds to a sertain bisimulation. It is prowed, that a group of monotonic automorphisms in any Petri Nets is finite.
Keywords: group of automorphism, bisimulation of states
Mots-clés : monotonic isomorphism.
@article{MAIS_2008_15_4_a0,
     author = {Yu. A. Belov},
     title = {Finite automorphism groups of {Petri} {Nets}},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {3--9},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a0/}
}
TY  - JOUR
AU  - Yu. A. Belov
TI  - Finite automorphism groups of Petri Nets
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2008
SP  - 3
EP  - 9
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a0/
LA  - ru
ID  - MAIS_2008_15_4_a0
ER  - 
%0 Journal Article
%A Yu. A. Belov
%T Finite automorphism groups of Petri Nets
%J Modelirovanie i analiz informacionnyh sistem
%D 2008
%P 3-9
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a0/
%G ru
%F MAIS_2008_15_4_a0
Yu. A. Belov. Finite automorphism groups of Petri Nets. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 4, pp. 3-9. http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a0/

[1] E. V. Kuzmin, V. A. Sokolov, Strukturirovannye sistemy perekhodov, Fizmatlit, M., 2006 | MR

[2] Yu. A. Belov, “Avtomorfizmy sistem perekhodov”, Modelirovanie i analiz informatsionnykh sistem, 14:1 (2007), 54–56

[3] B. I. Plotkin, Gruppy avtomorfizmov algebraicheskikh sistem, Nauka, M., 1966 | MR | Zbl

[4] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, V. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl

[5] Yu. A. Belov, “Korrektnye otobrazheniya sistem s perekhodami”, Modelirovanie i analiz informatsionnykh sistem, 8:1 (2001), 47–49

[6] V. A. Bashkin, I. A. Lomazova, Ekvivalentnost resursov v setyakh Petri, Nauchnyi mir, M., 2008

[7] L. A. Skornyakov, Elementy teorii struktur, Fizmatlit, M., 1970 | MR