Finite automorphism groups of Petri Nets
Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 4, pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
The notion of isomorphism and automorphism for labeled transition systems are defined, in particular monotonic isomorphism and automorphism – for well structured transition systems. It is shown, that any automorphism corresponds to a sertain bisimulation. It is prowed, that a group of monotonic automorphisms in any Petri Nets is finite.
Keywords:
group of automorphism, bisimulation of states
Mots-clés : monotonic isomorphism.
Mots-clés : monotonic isomorphism.
@article{MAIS_2008_15_4_a0,
author = {Yu. A. Belov},
title = {Finite automorphism groups of {Petri} {Nets}},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {3--9},
year = {2008},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a0/}
}
Yu. A. Belov. Finite automorphism groups of Petri Nets. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 4, pp. 3-9. http://geodesic.mathdoc.fr/item/MAIS_2008_15_4_a0/
[1] E. V. Kuzmin, V. A. Sokolov, Strukturirovannye sistemy perekhodov, Fizmatlit, M., 2006 | MR
[2] Yu. A. Belov, “Avtomorfizmy sistem perekhodov”, Modelirovanie i analiz informatsionnykh sistem, 14:1 (2007), 54–56
[3] B. I. Plotkin, Gruppy avtomorfizmov algebraicheskikh sistem, Nauka, M., 1966 | MR | Zbl
[4] V. A. Emelichev, O. I. Melnikov, V. I. Sarvanov, V. I. Tyshkevich, Lektsii po teorii grafov, Nauka, M., 1990 | MR | Zbl
[5] Yu. A. Belov, “Korrektnye otobrazheniya sistem s perekhodami”, Modelirovanie i analiz informatsionnykh sistem, 8:1 (2001), 47–49
[6] V. A. Bashkin, I. A. Lomazova, Ekvivalentnost resursov v setyakh Petri, Nauchnyi mir, M., 2008
[7] L. A. Skornyakov, Elementy teorii struktur, Fizmatlit, M., 1970 | MR