Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2008_15_2_a5, author = {D. V. Glazkov}, title = {Lang-Kobayashi model dynamics features in the critical case}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {36--45}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_2_a5/} }
D. V. Glazkov. Lang-Kobayashi model dynamics features in the critical case. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 2, pp. 36-45. http://geodesic.mathdoc.fr/item/MAIS_2008_15_2_a5/
[1] R. Lang, K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties”, IEEE J. Quantum Electron, 16(1):3 (1980), 347–355 | DOI
[2] V. Rottschäfer, B. Krauskopf, A three-parameter study of external cavity modes in semiconductor lasers with optical feedback, Proc. IFAC-TDS 2004, www.enm.bris.ac.uk/anm/preprints/2004r05.html
[3] A. M. Levine [et al.], “Diode lasers with optical feedback: Stability of the maximum gain mode”, Phys. Rev. A, 52:5 (1995), 3436–3439 | DOI
[4] P. Alsing [et al.], “Lang and Kobayashi phase equation”, Phys. Rev. A, 53:6 (1996), 4429–4434 | DOI
[5] S. A. Kaschenko, “Bifurkatsii tsikla v singulyarno vozmuschennykh nelineinykh avtonomnykh sistemakh”, Izvestiya RAEN, seriya MMMIU, 2:4 (1998), 5–53
[6] S. A. Kaschenko, “Lokalnaya dinamika nelineinykh singulyarno vozmuschennykh sistem s zapazdyvaniem”, Differentsialnye uravneniya, 35:10 (1999), 1343–1355 | MR
[7] D. V. Glazkov, “Prosteishie ustoichivye rezhimy v modeli Langa – Kobayashi s bolshim zapazdyvaniem”, Sovremennye problemy matematiki i informatiki, Sbornik nauchnykh trudov molodykh uchenykh, aspirantov i studentov, 7, Yarosl. gos. un-t, Yaroslavl, 2005, 123–130
[8] E. V. Grigorieva, H. Haken, S. A. Kaschenko, “Theory of quasiperiodicity in model of lasers with delayed optoelectronic feedback”, Opt. Commun, 165 (1999), 279–292 | DOI
[9] B. F. Redmond, V. G. LeBlanc, A. Longtin, “Bifurcation analysis of a class of first-order nonlinear delay-differential equations with reflectional symmetry”, Physica D, 166 (2002), 131 | DOI | MR | Zbl
[10] S. Schikora [et al.], “All-Optical Noninvasive Control of Unstable Steady States in a Semiconductor Laser”, Phys. Rev. Lett., 97 (2006), 213902, 4 pp. | DOI
[11] A. Tabaka [et al.], “Bifurcation study of regular pulse packages in laser diodes subject to optical feedback”, Phys. Rev. E, 70 (2004), 036211, 9 pp. | DOI
[12] A. A. Tager, B. B. Elenkrig, “Stability regimes and high-frequency modulation of laser diodes with short external cavity”, IEEE J. Quantum Electron, 29:12 (1993), 2886–2890 | DOI
[13] A. A. Tager, K. Petermann, “High-frequency oscillations and self-mode locking in short external-cavity laser diodes”, IEEE J. Quantum Electron, 30:7 (1994), 1553–1561 | DOI
[14] G. H. M. Van Tartwijk, G. P. Agrawal, “Laser instabilities: a modern perspective”, Progress in Quantum Electronics, 22 (1998), 43–122 | DOI