Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model
Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 1, pp. 45-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we introduce a boundary value problem based on the well known Multiplier-Accelerator model proposed by Paul Samuelson which is an extension of the works of John Keynes. The suggested boundary value problem is to consider spatial effects when studying processes of macroeconomics. For the boundary value problem given, using the Invariant Manifolds method, the method of Averaging and the Theory of Normal Forms we show the existence of stable spatial non-homogeneous invariant tori.
@article{MAIS_2008_15_1_a7,
     author = {E. V. Korshunova and A. N. Kulikov},
     title = {Spatial non-homogeneous invariant tori in the {Multiplier-Accelerator} model},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {45--50},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a7/}
}
TY  - JOUR
AU  - E. V. Korshunova
AU  - A. N. Kulikov
TI  - Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2008
SP  - 45
EP  - 50
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a7/
LA  - ru
ID  - MAIS_2008_15_1_a7
ER  - 
%0 Journal Article
%A E. V. Korshunova
%A A. N. Kulikov
%T Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model
%J Modelirovanie i analiz informacionnyh sistem
%D 2008
%P 45-50
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a7/
%G ru
%F MAIS_2008_15_1_a7
E. V. Korshunova; A. N. Kulikov. Spatial non-homogeneous invariant tori in the Multiplier-Accelerator model. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 1, pp. 45-50. http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a7/

[1] T. Pu, Nelineinaya ekonomicheskaya dinamika, Udmurtskii universitet, Izhevsk, 2000, 199 pp.

[2] V. B. Zang, Sinergeticheskaya ekonomika. Vremya i peremeny v nelineinoi ekonomicheskoi teorii, Mir, M., 1999, 400 pp.

[3] E. V. Korshunova, “Prostranstvenno-neodnorodnye tsikly delovoi aktivnosti v modeli multiplikator-akselerator”, Sovremennye problemy matematiki i informatiki, 8 (2006), 92—97

[4] E. F. Mischenko, V. A. Sadovnichii, A. Yu. Kolesov, N. Kh. Rozov, Avtovolnovye protsessy v nelineinykh sredakh s diffuziei, Fizmatlit, M., 2005, 430 pp.

[5] A. Yu. Kolesov, A. N. Kulikov, Invariantnye tory nelineinykh evolyutsionnykh uravnenii, Ucheb. posobie, Yaroslavl, 2003, 108 pp.

[6] Dzh. Gukenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, Institut kompyuternykh issledovanii, Moskva; Izhevsk, 2002, 560 pp.