Travelling waves bifurcation of the modified Ginzburg-Landau's equation
Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 1, pp. 10-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main target of this work is the modified Ginzburg-Landau's equation, addresses given in a monograph of G. G. Malinetskii as one of the equations, where blow-up regimes can be possible. Together with periodic boundary conditions this equation forms a boundary value problem. Existence, stability-instability and local bifurcations are the main purposes of this work. It has been shown that in this aspect the results are those that obtained while considering the traditional version of Ginzburg-Landau's equation. The study of bifurcation problem is based on the method of normal forms and adapted to the assigned boundary value problem.
@article{MAIS_2008_15_1_a1,
     author = {A. E. Kotikov and A. N. Kulikov},
     title = {Travelling waves bifurcation of the modified {Ginzburg-Landau's} equation},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {10--15},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a1/}
}
TY  - JOUR
AU  - A. E. Kotikov
AU  - A. N. Kulikov
TI  - Travelling waves bifurcation of the modified Ginzburg-Landau's equation
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2008
SP  - 10
EP  - 15
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a1/
LA  - ru
ID  - MAIS_2008_15_1_a1
ER  - 
%0 Journal Article
%A A. E. Kotikov
%A A. N. Kulikov
%T Travelling waves bifurcation of the modified Ginzburg-Landau's equation
%J Modelirovanie i analiz informacionnyh sistem
%D 2008
%P 10-15
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a1/
%G ru
%F MAIS_2008_15_1_a1
A. E. Kotikov; A. N. Kulikov. Travelling waves bifurcation of the modified Ginzburg-Landau's equation. Modelirovanie i analiz informacionnyh sistem, Tome 15 (2008) no. 1, pp. 10-15. http://geodesic.mathdoc.fr/item/MAIS_2008_15_1_a1/

[1] G. G. Malinetskii, A. B. Potapov, A. V. Podlazov, Nelineinaya dinamika. Podkhody, rezultaty, nadezhdy, Komkniga, M., 2006, 279 pp.

[2] A. Yu. Kolesov, A. N. Kulikov, N. Kh. Rozov, “Tsilindricheskie beguschie volny obobschennogo kubicheskogo uravneniya Shredingera”, Doklady RAN, 406:1 (2006), 25–29

[3] A. N. Kulikov, “K voprosu o bifurkatsiyakh avtokolebanii dlya singulyarno vozmuschennoi nelineinoi kraevoi zadachi giperbolicheskogo tipa”, Izvestiya RAEN. Differentsialnye uravneniya, 2001, no. 5, 74–75 | MR

[4] A. N. Kulikov, “Bifurkatsiya avtokolebanii v dvukh singulyarno vozmuschennykh periodicheskikh zadachakh giperbolicheskogo tipa”, Matematika v Yaroslavskom universitete, Sbornik obzornykh statei, Yaroslavl, 2001, 183–194 | MR

[5] D. A. Kulikov, “Bifurkatsiya ploskikh voln obobschennogo kubicheskogo uravneniya Shredingera v tsilindricheskoi oblasti”, Modelirovanie i analiz inform. sistem, 13:4 (2006), 20–26