Fast algorithm for finding mean minimum distances
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 3, pp. 50-52
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\xi_0,\dots,\xi_n$ be strings drawn from some finite alphabet. In this paper we describe an algorithm for finding mean minimum distances between strings $\xi_0,\dots,\xi_s$ for all $s\le n$. The complexity of the algorithm is $\mathcal O(nm)$, where $m$ is the length of strings.
@article{MAIS_2007_14_3_a4,
author = {N. E. Timofeeva},
title = {Fast algorithm for finding mean minimum distances},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {50--52},
year = {2007},
volume = {14},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a4/}
}
N. E. Timofeeva. Fast algorithm for finding mean minimum distances. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 3, pp. 50-52. http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a4/
[1] V. V. Maiorov, E. A. Timofeev, “Statisticheskaya otsenka obobschennykh razmernostei”, Mat. zametki, 71:5 (2002), 697–712 | MR | Zbl
[2] A. Kaltchenko, En-hui Yang, N. Timofeeva, “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Information Theory Workshop ITW '07 (IEEE 2-6 Sept. 2007), 2007, 644–649 | MR