Fast algorithm for finding mean minimum distances
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 3, pp. 50-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\xi_0,\dots,\xi_n$ be strings drawn from some finite alphabet. In this paper we describe an algorithm for finding mean minimum distances between strings $\xi_0,\dots,\xi_s$ for all $s\le n$. The complexity of the algorithm is $\mathcal O(nm)$, where $m$ is the length of strings.
@article{MAIS_2007_14_3_a4,
     author = {N. E. Timofeeva},
     title = {Fast algorithm for finding mean minimum distances},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {50--52},
     publisher = {mathdoc},
     volume = {14},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a4/}
}
TY  - JOUR
AU  - N. E. Timofeeva
TI  - Fast algorithm for finding mean minimum distances
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2007
SP  - 50
EP  - 52
VL  - 14
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a4/
LA  - ru
ID  - MAIS_2007_14_3_a4
ER  - 
%0 Journal Article
%A N. E. Timofeeva
%T Fast algorithm for finding mean minimum distances
%J Modelirovanie i analiz informacionnyh sistem
%D 2007
%P 50-52
%V 14
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a4/
%G ru
%F MAIS_2007_14_3_a4
N. E. Timofeeva. Fast algorithm for finding mean minimum distances. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 3, pp. 50-52. http://geodesic.mathdoc.fr/item/MAIS_2007_14_3_a4/

[1] V. V. Maiorov, E. A. Timofeev, “Statisticheskaya otsenka obobschennykh razmernostei”, Mat. zametki, 71:5 (2002), 697–712 | MR | Zbl

[2] A. Kaltchenko, En-hui Yang, N. Timofeeva, “Entropy Estimators with Almost Sure Convergence and an $O(n^{-1})$ Variance”, Information Theory Workshop ITW '07 (IEEE 2-6 Sept. 2007), 2007, 644–649 | MR