Stability of the neuron model based on the equation with delay
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 27-29
Cet article a éte moissonné depuis la source Math-Net.Ru
We analyze the periodical solution of a differential equation with delay describing the neuron-autogenerator dynamics. The stability of the periodical solution of the equation with certain parameters is investigated.
@article{MAIS_2007_14_2_a5,
author = {Yu. V. Bogomolov},
title = {Stability of the neuron model based on the equation with delay},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {27--29},
year = {2007},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a5/}
}
Yu. V. Bogomolov. Stability of the neuron model based on the equation with delay. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 27-29. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a5/
[1] V. V. Maiorov, I. Yu. Myshkin, “Matematicheskoe modelirovanie neironov na osnove uravnenii s zapazdyvaniem”, Matematicheskoe modelirovanie, 2:11 (1990), 64–76 | MR
[2] S. A. Kaschenko, V. V. Maiorov, “Issledovanie differentsialno-raznostnykh uravnenii, modeliruyuschikh impulsnuyu aktivnost neirona”, Matematicheskoe modelirovanie, 5:12 (1993), 13–25 | MR
[3] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR