${SR}$-groups of order $2^np^m$ with dihedral Sylow 2-subgroup
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 17-23
Cet article a éte moissonné depuis la source Math-Net.Ru
The structure of ${SR}$-groups with dihedral Sylow $2$-subgroup modulo Frattini subgroup is described. It is proved that if a group $G$ is a non-supersolvable ${SR}$-group of order $2^np^m$ with dihedral Sylow $2$-subgroup, $p$ is Mersenne prime.
@article{MAIS_2007_14_2_a3,
author = {V. V. Yanishevskii},
title = {${SR}$-groups of order $2^np^m$ with dihedral {Sylow} 2-subgroup},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {17--23},
year = {2007},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a3/}
}
V. V. Yanishevskii. ${SR}$-groups of order $2^np^m$ with dihedral Sylow 2-subgroup. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 17-23. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a3/
[1] S. P. Strunkov, “O raspolozhenii kharakterov prosto privodimykh grupp”, Matematicheskie zametki, 31:3 (1982), 357–361 | MR | Zbl
[2] The GAP Group, GAP — Groups, Algorithms and Programming, Version 4.4.9, St. Andrews, Aachen, 2006 http://www.gap-system.org
[3] Ch. Kertis, I. Rainer, Teoriya predstavlenii grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR
[4] M. Khamermesh, Teoriya grupp i ee primenenie k fizicheskim problemam, Mir, M., 1966
[5] B. Huppert, Endliche Gruppen I, Springer, Berlin; Heidelberg; New York, 1967 | MR | Zbl
[6] B. Huppert, N. Blackburn, Finite Groups II, Springer, Berlin e.a., 1982 | MR
[7] D. Gorenstein, Finite groups, Harper and Row, N.Y., 1968 | MR | Zbl