${SR}$-groups of order $2^np^m$ with dihedral Sylow 2-subgroup
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of ${SR}$-groups with dihedral Sylow $2$-subgroup modulo Frattini subgroup is described. It is proved that if a group $G$ is a non-supersolvable ${SR}$-group of order $2^np^m$ with dihedral Sylow $2$-subgroup, $p$ is Mersenne prime.
@article{MAIS_2007_14_2_a3,
     author = {V. V. Yanishevskii},
     title = {${SR}$-groups of order $2^np^m$ with dihedral {Sylow} 2-subgroup},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {17--23},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a3/}
}
TY  - JOUR
AU  - V. V. Yanishevskii
TI  - ${SR}$-groups of order $2^np^m$ with dihedral Sylow 2-subgroup
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2007
SP  - 17
EP  - 23
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a3/
LA  - ru
ID  - MAIS_2007_14_2_a3
ER  - 
%0 Journal Article
%A V. V. Yanishevskii
%T ${SR}$-groups of order $2^np^m$ with dihedral Sylow 2-subgroup
%J Modelirovanie i analiz informacionnyh sistem
%D 2007
%P 17-23
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a3/
%G ru
%F MAIS_2007_14_2_a3
V. V. Yanishevskii. ${SR}$-groups of order $2^np^m$ with dihedral Sylow 2-subgroup. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 17-23. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a3/

[1] S. P. Strunkov, “O raspolozhenii kharakterov prosto privodimykh grupp”, Matematicheskie zametki, 31:3 (1982), 357–361 | MR | Zbl

[2] The GAP Group, GAP — Groups, Algorithms and Programming, Version 4.4.9, St. Andrews, Aachen, 2006 http://www.gap-system.org

[3] Ch. Kertis, I. Rainer, Teoriya predstavlenii grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[4] M. Khamermesh, Teoriya grupp i ee primenenie k fizicheskim problemam, Mir, M., 1966

[5] B. Huppert, Endliche Gruppen I, Springer, Berlin; Heidelberg; New York, 1967 | MR | Zbl

[6] B. Huppert, N. Blackburn, Finite Groups II, Springer, Berlin e.a., 1982 | MR

[7] D. Gorenstein, Finite groups, Harper and Row, N.Y., 1968 | MR | Zbl