Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance 1:2
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 53-57
Cet article a éte moissonné depuis la source Math-Net.Ru
A differential-difference equation arising at the description of dynamics of a population is considered. It is supposed that the parameters are chosen so that characteristic quasipolinom has two pairs of imaginary roots which are in resonance 1:2. The normal form of the equation, when the parameters are close to the critical values, is constructed. Phase reorganizations of a normal form under changes of parameters are studied.
@article{MAIS_2007_14_2_a11,
author = {E. O. Kiseleva},
title = {Local dynamics of the {Hutchinson} equation with two delays in a critical case of a resonance~1:2},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {53--57},
year = {2007},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/}
}
TY - JOUR AU - E. O. Kiseleva TI - Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance 1:2 JO - Modelirovanie i analiz informacionnyh sistem PY - 2007 SP - 53 EP - 57 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/ LA - ru ID - MAIS_2007_14_2_a11 ER -
E. O. Kiseleva. Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance 1:2. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 53-57. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/
[1] Yu. S. Kolesov, Problema adekvatnosti ekologicheskikh uravnenii, Dep. v VINITI, No 1901-85, Yaroslavl, 1985
[2] S. D. Glyzin, A. Yu. Kolesov, Lokalnye metody analiza dinamicheskikh sistem, uchebnoe posobie, YarGU, Yaroslavl, 2006, 92 pp.