Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance~1:2
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 53-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

A differential-difference equation arising at the description of dynamics of a population is considered. It is supposed that the parameters are chosen so that characteristic quasipolinom has two pairs of imaginary roots which are in resonance 1:2. The normal form of the equation, when the parameters are close to the critical values, is constructed. Phase reorganizations of a normal form under changes of parameters are studied.
@article{MAIS_2007_14_2_a11,
     author = {E. O. Kiseleva},
     title = {Local dynamics of the {Hutchinson} equation with two delays in a critical case of a resonance~1:2},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {53--57},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/}
}
TY  - JOUR
AU  - E. O. Kiseleva
TI  - Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance~1:2
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2007
SP  - 53
EP  - 57
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/
LA  - ru
ID  - MAIS_2007_14_2_a11
ER  - 
%0 Journal Article
%A E. O. Kiseleva
%T Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance~1:2
%J Modelirovanie i analiz informacionnyh sistem
%D 2007
%P 53-57
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/
%G ru
%F MAIS_2007_14_2_a11
E. O. Kiseleva. Local dynamics of the Hutchinson equation with two delays in a critical case of a resonance~1:2. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 53-57. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a11/

[1] Yu. S. Kolesov, Problema adekvatnosti ekologicheskikh uravnenii, Dep. v VINITI, No 1901-85, Yaroslavl, 1985

[2] S. D. Glyzin, A. Yu. Kolesov, Lokalnye metody analiza dinamicheskikh sistem, uchebnoe posobie, YarGU, Yaroslavl, 2006, 92 pp.