Normalization of a delay differential equation and bifurcation leading to an asymptotically large period cycle
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 47-52
Cet article a éte moissonné depuis la source Math-Net.Ru
We investigate local dynamics of a scalar delay differential equation in the vicinty of the zero solution. When an order parameter is close to the critical value, we use the normal forms method. An asymptotically large period cycle appears as the result of the codimension two bifurcation.
@article{MAIS_2007_14_2_a10,
author = {D. V. Glazkov},
title = {Normalization of a delay differential equation and bifurcation leading to an asymptotically large period cycle},
journal = {Modelirovanie i analiz informacionnyh sistem},
pages = {47--52},
year = {2007},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a10/}
}
TY - JOUR AU - D. V. Glazkov TI - Normalization of a delay differential equation and bifurcation leading to an asymptotically large period cycle JO - Modelirovanie i analiz informacionnyh sistem PY - 2007 SP - 47 EP - 52 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a10/ LA - ru ID - MAIS_2007_14_2_a10 ER -
%0 Journal Article %A D. V. Glazkov %T Normalization of a delay differential equation and bifurcation leading to an asymptotically large period cycle %J Modelirovanie i analiz informacionnyh sistem %D 2007 %P 47-52 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a10/ %G ru %F MAIS_2007_14_2_a10
D. V. Glazkov. Normalization of a delay differential equation and bifurcation leading to an asymptotically large period cycle. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 47-52. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a10/
[1] T. Erneux, H. O. Walther, “Bifurcation to large period oscillations in physical systems controlled by delay”, Phys. Rev. E, 72 (2005), 066206, 5 pp. | DOI | MR
[2] V.D. Goryachenko, Elementy teorii kolebanii, Ucheb. posobie dlya vuzov, 2-e izd., Vyssh. shk., M., 2001, 395 pp.
[3] A .A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, 2-e izd., Fizmatgiz, M., 1959, 926 pp.
[4] N. N. Bautin, E. A. Leontovich, Metody i priemy kachestvennogo issledovaniya dinamicheskikh sistem na ploskosti, Nauka, M., 1991, 492 pp. | MR
[5] A. Yu. Obolenskii, Lektsii po kachestvennoi teorii differentsialnykh uravnenii, Institut kompyuternykh issledovanii, Moskva-Izhevsk, 2006, 320 pp.