Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2007_14_1_a0, author = {M. V. Nevskij}, title = {Minimal projections and largest simplices}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {3--10}, publisher = {mathdoc}, volume = {14}, number = {1}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_1_a0/} }
M. V. Nevskij. Minimal projections and largest simplices. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/MAIS_2007_14_1_a0/
[1] M. V. Nevskii, I. P. Irodova, Nekotopye vopposy teopii ppiblizheniya funktsii, uchebnoe posobie, YapGU, Yaposlavl, 1999, 92 pp.
[2] M. V. Nevskii, “Otsenki dlya minimalnoi nopmy ppoektopa ppi lineinoi inteppolyatsii po vepshinam $n$-mepnogo kuba”, Modelipovanie i analiz infopmatsionnykh sistem, 10:1 (2003), 9–19
[3] M. V. Nevskii, “Geometricheskie metody v zadache o minimalnom proektore”, Modelipovanie i analiz infopmatsionnykh sistem, 13:2 (2006), 16–29
[4] M. V. Nevskii, Geometricheskie konstruktsii v zadache ob optimalnoi lineinoi interpolyatsii na $n$-mernom kube, Dep. v VINITI 13.06.2006, No 785-B2006, Yarosl. gos. un-t, Yaposlavl, 2006, 21 pp.
[5] M. Hudelson, V. Klee, D. Larman, “Largest $j$-simplices in $d$-cubes: some relatives of the Hadamard maximum determinant problem”, Linear Algebra Appl., 241-243 (1996), 519–598 | DOI | MR | Zbl
[6] M. Lassak, “Parallelotopes of maximum volume in a simplex”, Discrete Comput. Geom., 21 (1999), 449–462 | DOI | MR | Zbl