Voir la notice de l'article provenant de la source Numdam
We semi-discretize in space a time-dependent Navier-Stokes system on a three-dimensional polyhedron by finite-elements schemes defined on two grids. In the first step, the fully non-linear problem is semi-discretized on a coarse grid, with mesh-size . In the second step, the problem is linearized by substituting into the non-linear term, the velocity computed at step one, and the linearized problem is semi-discretized on a fine grid with mesh-size . This approach is motivated by the fact that, on a convex polyhedron and under adequate assumptions on the data, the contribution of to the error analysis is measured in the norm in space and time, and thus, for the lowest-degree elements, is of the order of . Hence, an error of the order of can be recovered at the second step, provided .
@article{M2AN_2001__35_5_945_0, author = {Girault, Vivette and Lions, Jacques-Louis}, title = {Two-grid finite-element schemes for the transient {Navier-Stokes} problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {945--980}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1866277}, zbl = {1032.76032}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_945_0/} }
TY - JOUR AU - Girault, Vivette AU - Lions, Jacques-Louis TI - Two-grid finite-element schemes for the transient Navier-Stokes problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 945 EP - 980 VL - 35 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_945_0/ LA - en ID - M2AN_2001__35_5_945_0 ER -
%0 Journal Article %A Girault, Vivette %A Lions, Jacques-Louis %T Two-grid finite-element schemes for the transient Navier-Stokes problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 945-980 %V 35 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_945_0/ %G en %F M2AN_2001__35_5_945_0
Girault, Vivette; Lions, Jacques-Louis. Two-grid finite-element schemes for the transient Navier-Stokes problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 5, pp. 945-980. http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_945_0/