Voir la notice de l'article provenant de la source Numdam
In this note we give sharp lower bounds for a non-convex functional when minimised over the space of functions that are piecewise affine on a triangular grid and satisfy an affine boundary condition in the second lamination convex hull of the wells of the functional.
@article{M2AN_2001__35_5_921_0, author = {Lorent, Andrew}, title = {An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {921--934}, publisher = {EDP-Sciences}, volume = {35}, number = {5}, year = {2001}, mrnumber = {1866275}, zbl = {1017.74067}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/} }
TY - JOUR AU - Lorent, Andrew TI - An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 921 EP - 934 VL - 35 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/ LA - en ID - M2AN_2001__35_5_921_0 ER -
%0 Journal Article %A Lorent, Andrew %T An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 921-934 %V 35 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/ %G en %F M2AN_2001__35_5_921_0
Lorent, Andrew. An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 5, pp. 921-934. http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/