An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 5, pp. 921-934
Cet article a éte moissonné depuis la source Numdam
In this note we give sharp lower bounds for a non-convex functional when minimised over the space of functions that are piecewise affine on a triangular grid and satisfy an affine boundary condition in the second lamination convex hull of the wells of the functional.
Classification :
74B20, 74S05
Keywords: finite-well non-convex functionals, finite element approximations
Keywords: finite-well non-convex functionals, finite element approximations
@article{M2AN_2001__35_5_921_0,
author = {Lorent, Andrew},
title = {An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {921--934},
year = {2001},
publisher = {EDP-Sciences},
volume = {35},
number = {5},
mrnumber = {1866275},
zbl = {1017.74067},
language = {en},
url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/}
}
TY - JOUR AU - Lorent, Andrew TI - An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 921 EP - 934 VL - 35 IS - 5 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/ LA - en ID - M2AN_2001__35_5_921_0 ER -
%0 Journal Article %A Lorent, Andrew %T An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 921-934 %V 35 %N 5 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/ %G en %F M2AN_2001__35_5_921_0
Lorent, Andrew. An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 5, pp. 921-934. http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/