An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 5, pp. 921-934

Voir la notice de l'article provenant de la source Numdam

In this note we give sharp lower bounds for a non-convex functional when minimised over the space of functions that are piecewise affine on a triangular grid and satisfy an affine boundary condition in the second lamination convex hull of the wells of the functional.

Classification : 74B20, 74S05
Keywords: finite-well non-convex functionals, finite element approximations
@article{M2AN_2001__35_5_921_0,
     author = {Lorent, Andrew},
     title = {An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {921--934},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {5},
     year = {2001},
     mrnumber = {1866275},
     zbl = {1017.74067},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/}
}
TY  - JOUR
AU  - Lorent, Andrew
TI  - An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2001
SP  - 921
EP  - 934
VL  - 35
IS  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/
LA  - en
ID  - M2AN_2001__35_5_921_0
ER  - 
%0 Journal Article
%A Lorent, Andrew
%T An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2001
%P 921-934
%V 35
%N 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/
%G en
%F M2AN_2001__35_5_921_0
Lorent, Andrew. An optimal scaling law for finite element approximations of a variational problem with non-trivial microstructure. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 5, pp. 921-934. http://geodesic.mathdoc.fr/item/M2AN_2001__35_5_921_0/