Voir la notice de l'article provenant de la source Numdam
We consider a model for phase separation of a multi-component alloy with non-smooth free energy and a degenerate mobility matrix. In addition to showing well-posedness and stability bounds for our approximation, we prove convergence in one space dimension. Furthermore an iterative scheme for solving the resulting nonlinear discrete system is analysed. We discuss also how our approximation has to be modified in order to be applicable to a logarithmic free energy. Finally numerical experiments with three components in one and two space dimensions are presented.
@article{M2AN_2001__35_4_713_0, author = {Barrett, John W. and Blowey, James F. and Garcke, Harald}, title = {On fully practical finite element approximations of degenerate {Cahn-Hilliard} systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {713--748}, publisher = {EDP-Sciences}, volume = {35}, number = {4}, year = {2001}, mrnumber = {1863277}, zbl = {0987.35071}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_4_713_0/} }
TY - JOUR AU - Barrett, John W. AU - Blowey, James F. AU - Garcke, Harald TI - On fully practical finite element approximations of degenerate Cahn-Hilliard systems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 713 EP - 748 VL - 35 IS - 4 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_4_713_0/ LA - en ID - M2AN_2001__35_4_713_0 ER -
%0 Journal Article %A Barrett, John W. %A Blowey, James F. %A Garcke, Harald %T On fully practical finite element approximations of degenerate Cahn-Hilliard systems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 713-748 %V 35 %N 4 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_4_713_0/ %G en %F M2AN_2001__35_4_713_0
Barrett, John W.; Blowey, James F.; Garcke, Harald. On fully practical finite element approximations of degenerate Cahn-Hilliard systems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 4, pp. 713-748. http://geodesic.mathdoc.fr/item/M2AN_2001__35_4_713_0/