Voir la notice de l'article provenant de la source Numdam
We discretize the nonlinear Schrödinger equation, with Dirichlet boundary conditions, by a linearly implicit two-step finite element method which conserves the norm. We prove optimal order a priori error estimates in the and norms, under mild mesh conditions for two and three space dimensions.
@article{M2AN_2001__35_3_389_0, author = {Zouraris, Georgios E.}, title = {On the convergence of a linear two-step finite element method for the nonlinear {Schr\"odinger} equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {389--405}, publisher = {EDP-Sciences}, volume = {35}, number = {3}, year = {2001}, mrnumber = {1837077}, zbl = {0991.65088}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_3_389_0/} }
TY - JOUR AU - Zouraris, Georgios E. TI - On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 389 EP - 405 VL - 35 IS - 3 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_3_389_0/ LA - en ID - M2AN_2001__35_3_389_0 ER -
%0 Journal Article %A Zouraris, Georgios E. %T On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 389-405 %V 35 %N 3 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_3_389_0/ %G en %F M2AN_2001__35_3_389_0
Zouraris, Georgios E. On the convergence of a linear two-step finite element method for the nonlinear Schrödinger equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 3, pp. 389-405. http://geodesic.mathdoc.fr/item/M2AN_2001__35_3_389_0/