Voir la notice de l'article provenant de la source Numdam
We consider the initial value problem for degenerate viscous and inviscid scalar conservation laws where the flux function depends on the spatial location through a “rough” coefficient function . We show that the Engquist-Osher (and hence all monotone) finite difference approximations converge to the unique entropy solution of the governing equation if, among other demands, is in , thereby providing alternative (new) existence proofs for entropy solutions of degenerate convection-diffusion equations as well as new convergence results for their finite difference approximations. In the inviscid case, we also provide a rate of convergence. Our convergence proofs are based on deriving a series of a priori estimates and using a general compactness criterion.
@article{M2AN_2001__35_2_239_0, author = {Karlsen, Kenneth Hvistendahl and Risebro, Nils Henrik}, title = {Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {239--269}, publisher = {EDP-Sciences}, volume = {35}, number = {2}, year = {2001}, mrnumber = {1825698}, zbl = {1032.76048}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_239_0/} }
TY - JOUR AU - Karlsen, Kenneth Hvistendahl AU - Risebro, Nils Henrik TI - Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 239 EP - 269 VL - 35 IS - 2 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_239_0/ LA - en ID - M2AN_2001__35_2_239_0 ER -
%0 Journal Article %A Karlsen, Kenneth Hvistendahl %A Risebro, Nils Henrik %T Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 239-269 %V 35 %N 2 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_239_0/ %G en %F M2AN_2001__35_2_239_0
Karlsen, Kenneth Hvistendahl; Risebro, Nils Henrik. Convergence of finite difference schemes for viscous and inviscid conservation laws with rough coefficients. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 2, pp. 239-269. http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_239_0/
[1] Convergence of finite volume schemes for a degenerate convection-diffusion equation arising in two-phase flow in porous media. Preprint (1999). | MR | Zbl
and ,[2] Diffusive BGK approximations for nonlinear multidimensional parabolic equations. Indiana Univ. Math. J. 49 (2000) 723-749. | Zbl
, and ,[3] On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes. J. Math. Anal. Appl. 247 (2000) 517-556. | Zbl
, and ,[4] Sedimentation and thickening: Phenomenological foundation and mathematical theory. Kluwer Academic Publishers, Dordrecht (1999). | Zbl | MR
, , and ,[5] Entropy solutions for nonlinear degenerate problems. Arch. Rational Mech. Anal. 147 (1999) 269-361. | Zbl
,[6] Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. RAIRO-Modél. Math. Anal. Numér. 33 (1999) 129-156. | Zbl | mathdoc-id
,[7] Convergence of an upstream finite volume scheme for a nonlinear hyperbolic equation on a triangular mesh. Numer. Math. 66 (1993) 139-157. | Zbl | EuDML
, and ,[8] An error estimate for finite volume methods for multidimensional conservation laws. Math. Comp. 63 (1994) 77-103. | Zbl
, and ,[9] Convergence of the finite volume method for multidimensional conservation laws. SIAM J. Numer. Anal. 32 (1995) 687-705. | Zbl
, and ,[10] A priori error estimates for numerical methods for scalar conservation laws. I. The general approach. Math. Comp. 65 (1996) 533-573. | Zbl
and ,[11] The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440-2463 (electronic). | Zbl
and ,[12] Monotone difference approximations for scalar conservation laws. Math. Comp. 34 (1980) 1-21. | Zbl
and ,[13] Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78 (1980) 385-390. | Zbl
and ,[14] One-sided difference approximations for nonlinear conservation laws. Math. Comp. 36 (1981) 321-351. | Zbl
and ,[15] Numerical solution of reservoir flow models based on large time step operator splitting algorithms, in Filtration in Porous media and industrial applications. Lect. Notes Math. 1734, Springer, Berlin (2000) 9-77. | Zbl
and ,[16] Discrete approximations of solutions to doubly nonlinear degenerate parabolic equations. Numer. Math. 86 (2000) 377-417. | Zbl
and ,[17] Degenerate convection-diffusion equations and implicit monotone difference schemes, in Hyperbolic problems: Theory, numerics, applications, Vol. I (Zürich, 1998). Birkhäuser, Basel (1999) 285-294. | Zbl
and ,[18] Viscous splitting approximation of mixed hyperbolic-parabolic convection-diffusion equations. Numer. Math. 83 (1999) 107-137. | Zbl
and ,[19] Monotone difference approximations of solutions to degenerate convection-diffusion equations. SIAM J. Numer. Anal. 37 (2000) 1838-1860 (electronic). | Zbl
and ,[20] Second order difference schemes for degenerate convection-diffusion equations. Preprint (in preparation).
and ,[21] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes. IMA J. Numer. Anal. 18 (1998) 563-594. | Zbl
, , and ,[22] Finite volumes and nonlinear diffusion equations. RAIRO-Modél. Math. Anal. Numér. 32 (1998) 747-761. | Zbl | mathdoc-id
, , and ,[23] Solution of the Cauchy problem for a conservation law with a discontinuous flux function. SIAM J. Math. Anal. 23 (1992) 635-648. | Zbl
and ,[24] On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. XXIX (1976) 297-322. | Zbl
, and ,[25] Operator splitting methods for degenerate convection-diffusion equations I: Convergence and entropy estimates, in Stochastic processes, physics and geometry: New interplays. A volume in honor of Sergio Albeverio. Amer. Math. Soc. (to appear). | Zbl | MR
, and ,[26] Operator splitting for nonlinear partial differential equations: An convergence theory. Preprint (in preparation).
, , and ,[27] Convergence of the Godunov method for a general resonant nonlinear balance law. SIAM J. Appl. Math. 55 (1995) 625-640. | Zbl
and ,[28] On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Preprint, Department of Mathematics, University of Bergen (2000). | Zbl | MR
and ,[29] Stability of a resonant system of conservation laws modeling polymer flow with gravitation. J. Differential Equations March (2000). | Zbl | MR
and ,[30] Convex conservation laws with discontinuous coefficients. Existence, uniqueness and asymptotic behavior. Comm. Partial Differential Equations 20 (1995) 1959-1990. | Zbl
and ,[31] Convergence of higher order upwind finite volume schemes on unstructured grids for scalar conservation laws in several space dimensions. Numer. Math. 71 (1995) 527-560. | Zbl
, and ,[32] Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994) 324-343. | Zbl
and ,[33] Results on the nature of the continuity of solutions of parabolic equations, and certain applications thereof. Mat. Zametki 6 (1969) 97-108. | Zbl
,[34] First order quasi-linear equations in several independent variables. Math. USSR Sbornik 10 (1970) 217-243.
,[35] New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241-282. | Zbl
and ,[36] Accuracy of some approximative methods for computing the weak solutions of a first-order quasi-linear equation. USSR Comput. Math. Math. Phys. Dokl. 16 (1976) 105-119. | Zbl
,[37] Error bounds for the methods of Glimm, Godunov and LeVeque. SIAM J. Numer. Anal. 22 (1985) 1074-1081. | Zbl
,[38] Convergence of higher order finite volume schemes on irregular grids. Adv. Comput. Math. 3 (1995) 197-218. | Zbl
,[39] A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations. Preprint, Mathematische Fakultät, Albert-Ludwigs-Universität Freiburg (2000).
,[40] Discontinuous solutions of non-linear differential equations. Amer. Math. Soc Transl. Ser. 2 26 (1963) 95-172. | Zbl
,[41] On the convergence of difference approximations to scalar conservation laws. Math. Comp. 50 (1988) 19-51. | Zbl
and ,[42] Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 599-602. | Zbl
and ,[43] Blow-up in quasilinear parabolic equations. Walter de Gruyter & Co., Berlin (1995). Translated from the 1987 Russian original by Michael Grinfeld and revised by the authors. | Zbl | MR
, , and ,[44] On convergence of monotone finite difference schemes with variable spatial differencing. Math. Comp. 40 (1983) 91-106. | Zbl
,[45] Global solution of the Cauchy problem for a class of nonstrictly hyperbolic conservation laws. Adv. in Appl. Math. 3 (1982) 335-375. | Zbl
,[46] Convergence of a difference scheme for conservation laws with a discontinuous flux. Preprint, Available at the URL http://www.math.ntnu.no/conservation/ | Zbl | MR
,[47] A difference scheme for conservation laws with a discontinuous flux - the nonconvex case. Preprint, Available at the URL http://www.math.ntnu.no/conservation/ | Zbl | MR
,[48] Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws. I. Explicit monotone schemes. RAIRO-Modél. Math. Anal. Numér. 28 (1994) 267-295. | Zbl | mathdoc-id
,[49] The spaces BV and quasi-linear equations. Math. USSR Sbornik 2 (1967) 225-267. | Zbl
,[50] Cauchy's problem for degenerate second order quasilinear parabolic equations. Math. USSR Sbornik 7 (1969) 365-387. | Zbl
and ,