On blow-up of solution for Euler equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 2, pp. 229-238

Voir la notice de l'article provenant de la source Numdam

We present numerical evidence for the blow-up of solution for the Euler equations. Our approximate solutions are Taylor polynomials in the time variable of an exact solution, and we believe that in terms of the exact solution, the blow-up will be rigorously proved.

Nous présentons une solution numérique des équations d'Euler montrant la solution non-bornée : l'approximation de la solution est donnée par une série de Taylor dans la variable de temps de la solution exacte, et il est probable que cet exemple fournira le résultat.

Classification : 35Q05
Keywords: Euler equations, blow-up of solution
@article{M2AN_2001__35_2_229_0,
     author = {Behr, Eric and Ne\v{c}as, Jind\v{r}ich and Wu, Hongyou},
     title = {On blow-up of solution for {Euler} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {229--238},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {2},
     year = {2001},
     mrnumber = {1825697},
     zbl = {0985.35057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_229_0/}
}
TY  - JOUR
AU  - Behr, Eric
AU  - Nečas, Jindřich
AU  - Wu, Hongyou
TI  - On blow-up of solution for Euler equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2001
SP  - 229
EP  - 238
VL  - 35
IS  - 2
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_229_0/
LA  - en
ID  - M2AN_2001__35_2_229_0
ER  - 
%0 Journal Article
%A Behr, Eric
%A Nečas, Jindřich
%A Wu, Hongyou
%T On blow-up of solution for Euler equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2001
%P 229-238
%V 35
%N 2
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_229_0/
%G en
%F M2AN_2001__35_2_229_0
Behr, Eric; Nečas, Jindřich; Wu, Hongyou. On blow-up of solution for Euler equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 2, pp. 229-238. http://geodesic.mathdoc.fr/item/M2AN_2001__35_2_229_0/