Voir la notice de l'article provenant de la source Numdam
We consider the identification of a distributed parameter in an elliptic variational inequality. On the basis of an optimal control problem formulation, the application of a primal-dual penalization technique enables us to prove the existence of multipliers giving a first order characterization of the optimal solution. Concerning the parameter we consider different regularity requirements. For the numerical realization we utilize a complementarity function, which allows us to rewrite the optimality conditions as a set of equalities. Finally, numerical results obtained from a least squares type algorithm emphasize the feasibility of our approach.
@article{M2AN_2001__35_1_129_0, author = {Hinterm\"uller, Michael}, title = {Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {129--152}, publisher = {EDP-Sciences}, volume = {35}, number = {1}, year = {2001}, mrnumber = {1811984}, zbl = {0978.65054}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_1_129_0/} }
TY - JOUR AU - Hintermüller, Michael TI - Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 129 EP - 152 VL - 35 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_1_129_0/ LA - en ID - M2AN_2001__35_1_129_0 ER -
%0 Journal Article %A Hintermüller, Michael %T Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 129-152 %V 35 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_1_129_0/ %G en %F M2AN_2001__35_1_129_0
Hintermüller, Michael. Inverse coefficient problems for variational inequalities : optimality conditions and numerical realization. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 1, pp. 129-152. http://geodesic.mathdoc.fr/item/M2AN_2001__35_1_129_0/