Voir la notice de l'article provenant de la source Numdam
@article{M2AN_2000__34_2_399_0, author = {Li, Ta-Tsien and Rao, Bopeng and Jin, Yi}, title = {Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {399--408}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1765666}, zbl = {1024.93027}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_399_0/} }
TY - JOUR AU - Li, Ta-Tsien AU - Rao, Bopeng AU - Jin, Yi TI - Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2000 SP - 399 EP - 408 VL - 34 IS - 2 PB - Dunod PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_399_0/ LA - en ID - M2AN_2000__34_2_399_0 ER -
%0 Journal Article %A Li, Ta-Tsien %A Rao, Bopeng %A Jin, Yi %T Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2000 %P 399-408 %V 34 %N 2 %I Dunod %C Paris %U http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_399_0/ %G en %F M2AN_2000__34_2_399_0
Li, Ta-Tsien; Rao, Bopeng; Jin, Yi. Semi-global $C^1$ solution and exact boundary controllability for reducible quasilinear hyperbolic systems. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 399-408. http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_399_0/
[1] Boundary controllability of nonlinear hyperbolic Systems. SIAM J. Control 7 (1969) 198-212. | Zbl | MR
,[2] Nonlinear hyperbolic problems with solutions on preassigned sets. Michigan Math. J. 17 (1970) 193-209. | Zbl | MR
,[3] Exact controllability of semilinear abstract Systems with applications to waves and plates boundary control problems. Appl. Math. Optim. 23 (1991) 109-154. | Zbl | MR
and ,[4] Global Classical Solutions for Quasilinear Hyperbolic Systems. Research in Applied Mathematics 32, Masson, John Wiley (1994). | Zbl | MR
,[5] Global exact boundary controllability of a class of quasilinear hyperbolic systems. J. Math. Anal. Appl. 225 (1998) 289-311. | Zbl | MR
and ,[6] Boundary Value Problems for Quasilinear Hyperbolic Systems. Duck University, Mathematics Series V (1985). | Zbl | MR
and ,[7] Contrôlabilité exacte, Perturbations et Stabilisation de Systèmes Distribués, Masson (1988) Vol. I.
,[8] Exact Controllability and Stabilization, The Multiplier Method, Masson, John Wiley (1994). | Zbl | MR
,[9] Controllability and stabilizability theory for linear partial differential equations. Recent progress and open questions. SIAM Rev. 20 (1978) 639-739. | Zbl | MR
,[10] Exact controllability for the semilinear wave equation. J, Math. Pures Appl. 69 (1990) 1-32. | Zbl | MR
,