Voir la notice de l'article provenant de la source Numdam
@article{M2AN_2000__34_2_275_0, author = {Bona, Jerry L. and Wu, Jiahong}, title = {Zero-dissipation limit for nonlinear waves}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {275--301}, publisher = {Dunod}, address = {Paris}, volume = {34}, number = {2}, year = {2000}, mrnumber = {1765660}, zbl = {0953.76006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_275_0/} }
TY - JOUR AU - Bona, Jerry L. AU - Wu, Jiahong TI - Zero-dissipation limit for nonlinear waves JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2000 SP - 275 EP - 301 VL - 34 IS - 2 PB - Dunod PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_275_0/ LA - en ID - M2AN_2000__34_2_275_0 ER -
Bona, Jerry L.; Wu, Jiahong. Zero-dissipation limit for nonlinear waves. ESAIM: Mathematical Modelling and Numerical Analysis , Special Issue for R. Temam's 60th birthday, Tome 34 (2000) no. 2, pp. 275-301. http://geodesic.mathdoc.fr/item/M2AN_2000__34_2_275_0/
[1] Non-local models for nonlinear, dispersive waves. Physica D 40 (1989) 360-392. | Zbl | MR
, , and ,[2] Decay of solutions of some nonlinear wave equations. J. Differential Equations 81 (1989) 1-49. | Zbl | MR
, and ,[3] Model equations for long waves in nonlinear Systems. Philos. Trans. Royal Soc. London Ser. A 272 (1972) 47-78. | Zbl | MR
, and ,[4] Asymptotic behavior in time of some equations generalizing the Korteweg-de Vries equation. Bull. Polish Acad. Sci. 32 (1984) 275-282. | Zbl | MR
,[5] On solitary waves and their role in the evolution of long waves. In Applications of Nonlinear Analysis in the Physical Sciences, H. Amann, N. Bazley and K. Kirchgâssner Eds, Pitman, London (1983) 183=205. | Zbl
,[6] A mathematical model for long waves generated by a wave-maker in nonlinear dispersive Systems. Proc. Cambridge Philos. Soc. 73 (1973) 391-405. | Zbl | MR
and ,[7] Fourier splitting and the dissipation of nonlinear waves. Proc. Royal Soc. Edinburgh 129A (1999) 477-502. | Zbl | MR
, and ,[8] The effect of dissipation on solutions of the generalized KdV equation. J. Comp. Appl. Math. 74 (1996) 127-154. | Zbl | MR
, , and ,[9] Conservative high-order numerical schemes for the generalized Korteweg-de Vries equation. Philos. Trans. Poyal Soc. Lond. Ser. A 351 (1995) 107-164. | Zbl | MR
, , and ,[10] Initial-boundary-value problems for model equations for the propagation of long waves. In Evolution Equations, G. Ferreyra, G.R. Goldstein, and F. Neubrander Eds, Marcel Dekker, Inc.: New York (1995) 65-94. | Zbl | MR
and ,[11] A generalized Korteweg-de Vries equation in a quarter plane. Contemporary Math. 221 (1999) 59-125. | Zbl | MR
and ,[12] Decay of solutions to nonlinear, dispersive, dissipative wave equations. Diff. & Intégral Equ. 6 (1993) 961-980. | Zbl | MR
and ,[13] More results on the decay of solutions to nonlinear, dispersive wave equations. Discrete & Cont. Dynamical Systems 1 (1995) 151-193. | Zbl | MR
and ,[14] An évaluation of a model equation for water waves. Philos. Trans. Royal Soc. Lond. Ser. A 302 (1981) 457-510. | Zbl | MR
, and ,[15] On the asymptotic behavior of solutions to nonlinear, dispersive, dissipative wave equations. Math. & Computers in Simulation 37 (1994) 265-277. | Zbl | MR
, and ,[16] Higher-order asymptotics of decaying solutions of some nonlinear, dispersive, dissipative wave equations. Nonlinearity 8 (1995) 1179-1206. | Zbl | MR
, and ,[17] The initial-value problem for the Korteweg-de Vries equation. Philos. Trans. Royal Soc. Lond. Ser. A 278 (1975) 555-601. | Zbl | MR
and ,[18] The KdV equation, posed in a quarter plane. SIAM J. Math. Anal. 14 (1983) 1056-1106. | Zbl | MR
and ,[19] KdV equation in a quarter plane, continuous dependence results. Diff. & Integral Equ. 2 (1989) 228-250. | Zbl | MR
and ,[20] Similarity solutions of the generalized Korteweg-de Vries equation. Math. Proc. Cambridge Philos. Soc. 127 (1999) 323-351. | Zbl | MR
and ,[21] The dissipation of nonlinear dispersive waves. Comm. PDE 17 (1992) 1665-1693. | Zbl | MR
,[22] A nonlinear equation incorporating damping and dispersion. J. Fluid Mech. 42 (1970) 49-60. | Zbl | MR
,[23] Shallow water waves on a viscous fluid - The undular bore. Phys. Fluids 15 (1972) 1693-1699. | Zbl
,[24] Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math. XLVI (1993) 27-94. | Zbl | MR
, and ,[25] A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573-603. | Zbl | MR
, and ,[26] Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion. J. Math. Phys. 9 (1968) 1204-1209. | Zbl | MR
, and ,[27] Nonlinear nonlocal equations in the theory of waves. Series Translations of Math. Mono. 133, American Math. Soc.: Providence (1994). | Zbl | MR
and ,[28] Short-wave asymptotics of weak shock waves and solitons in mechanics., Internat. J. Non-linear Mech. 11 (1976) 401-406. | Zbl | MR
,[29] Nonlinear theory of ion acoustic waves with Landau damping. Phys. Fluids 12 (1969) 2388-2394. | Zbl | MR
and ,[30] Sur quelques géneralisations de l'équation de Korteweg-de Vries. J. Math. Pures Appl. 58 (1979) 21-61. | Zbl | MR
,[31] The inviscid limit of the complex Ginzburg-Landau equation. J. Differential Equations 142 (1998) 413-433. | Zbl | MR
,[32] Shallow-water waves, the KdV equation and solitons. J. Fluid Mech. 47 (1971) 811-824.
and ,[33] Taylor series expansion for solutions of the KdV equation with respect to their initial values. J. Funct. Anal. 129 (1995) 293-324. | Zbl | MR
,