Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1999__33_1_129_0, author = {Chainais-Hillairet, Claire}, title = {Finite volume schemes for a nonlinear hyperbolic equation. {Convergence} towards the entropy solution and error estimate}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {129--156}, publisher = {EDP-Sciences}, volume = {33}, number = {1}, year = {1999}, mrnumber = {1685749}, zbl = {0921.65071}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1999__33_1_129_0/} }
TY - JOUR AU - Chainais-Hillairet, Claire TI - Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1999 SP - 129 EP - 156 VL - 33 IS - 1 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_1999__33_1_129_0/ LA - en ID - M2AN_1999__33_1_129_0 ER -
%0 Journal Article %A Chainais-Hillairet, Claire %T Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate %J ESAIM: Mathematical Modelling and Numerical Analysis %D 1999 %P 129-156 %V 33 %N 1 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_1999__33_1_129_0/ %G en %F M2AN_1999__33_1_129_0
Chainais-Hillairet, Claire. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 33 (1999) no. 1, pp. 129-156. http://geodesic.mathdoc.fr/item/M2AN_1999__33_1_129_0/
[1] An error estimate for finite volume methods for multidimensional convervation laws. Math. Comp. 63 (1994) 77-103. | Zbl | MR
, and ,[2] Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by some finite volume schemes. IMA. J. Numer. Anal. 18 (1998) 563-594. | Zbl | MR
, , and ,[3] Convergence of a finite volume seheme for a nonlinear hyperbolic equation, Proceedings of the Third colloquium on numerical analysis, edited by D. Bainov and V. Covachev. Elsevier (1995) 61-70. | Zbl | MR
, and ,[4] Existence and uniqueness of the entropy solution to a nonlinear hyperboiic equation. Chin. Ann. Math. B16 (1995) 1-14. | Zbl | MR
, and ,[5] First order quasilinear equations with several space variable. Math. USSR. Sb. 10 (1970) 217-243. | Zbl
,[6] Measure-valued solutions to conservation laws. Arch. Rat. Mech Anal. 88 (1985) 223-270. | Zbl | MR
,[7] Numerical methods for conservations laws. Birkhaeuser (1990). | Zbl | MR
,[8] Convergence and error estimate in finite volume schemes for gênerai multidimensional conservation laws. RAIRO Model. Math. Anal. Num. 28 (1994) 267-285. | Zbl | MR | mathdoc-id
,