An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 32 (1998) no. 5, pp. 579-610.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1998__32_5_579_0,
     author = {Campbell, Alain and Nazarov, Sergue{\"\i}},
     title = {An asymptotic study of a plate problem by a rearrangement method. {Application} to the mechanical impedance},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {579--610},
     publisher = {Elsevier},
     volume = {32},
     number = {5},
     year = {1998},
     mrnumber = {1643481},
     zbl = {0905.73029},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1998__32_5_579_0/}
}
TY  - JOUR
AU  - Campbell, Alain
AU  - Nazarov, Sergueï
TI  - An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1998
SP  - 579
EP  - 610
VL  - 32
IS  - 5
PB  - Elsevier
UR  - http://geodesic.mathdoc.fr/item/M2AN_1998__32_5_579_0/
LA  - en
ID  - M2AN_1998__32_5_579_0
ER  - 
%0 Journal Article
%A Campbell, Alain
%A Nazarov, Sergueï
%T An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1998
%P 579-610
%V 32
%N 5
%I Elsevier
%U http://geodesic.mathdoc.fr/item/M2AN_1998__32_5_579_0/
%G en
%F M2AN_1998__32_5_579_0
Campbell, Alain; Nazarov, Sergueï. An asymptotic study of a plate problem by a rearrangement method. Application to the mechanical impedance. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 32 (1998) no. 5, pp. 579-610. http://geodesic.mathdoc.fr/item/M2AN_1998__32_5_579_0/

[1] A. Campbell and S. Nazarov, Comportement d'une plaque élastique dont une petite région est rigide et animée d'un mouvement vibratoire. Étude asymptotique de la matrice d'impédance. Annales de la Faculté des Sciences de Toulouse, IV, 1995, n°2, p 211-242. | Zbl | MR | mathdoc-id

[2] A. Campbell and S. Nazarov, Une justification de la méthode de raccordement de développements asymptotiques appliquée à un problème de plaque. Journal de Mathématiques Pure et Appliquées, 1996, Série 9. Tome 76, n° 1, pp 15-54, 1997. | Zbl | MR

[3] I. C. Gohberg and M. G. Krejn, Opérateurs linéaires non auto-adjoints dans un espace hilbertien, Dunod, Paris, 1971. | MR

[4] A. M. Ilyin, Matching of asymptotic expansions of solutions of boundary value problem (in russian), Nauka, Moscou, 1989, translated in english in Amer. Math. Soc., Providence, 1992. | Zbl | MR

[5] V. Kondratiev, Boundary value problems for elliptic equations in domains with conical or angular points (in russian), Trady Moskov. Mat. Obshch. 16, 1967, p. 209-212, translated in enghsh in Trans. Moskov. Math. Soc., 16, 1967. | Zbl | MR

[6] D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity, Paris, New-York, Masson-Wiley, 1987. | Zbl | MR

[7] V. Mazya, S. Nazarov and B. Plamenevski, On the asymptotic behaviour of solutions of elliptic boundary value problems with irregular perturbations of the domain (in russian), Problemy Mat. Anal. 8. Izdat. Leningrad. Gos. Univ., Leningrad, 1981, p. 72-153. | Zbl | MR

[8] V. Marya, S. Nazarov and B. Plamenevski, Asymptotishe theorie elliptischer randwertaufgaben in singulär gestörten gebieten. Bd. 1 & 2,Berlin, Academie-Verlag, 1990-91.

[9] S. Nazarov and B. Plamenevski, Elliptic problems in domains with piecewise smooth boundaries, de Gruyter, Berlin, 1994. | Zbl | MR

[10] J. Sanchez-Hubert and E. Sanchez-Palencia, Vibration and coupling of continuons Systems, Springer, Berlin, 1989. | Zbl | MR

[11] M. D. Van Dyke, Perturbations methods in fluid mechanics, Academic Press, New-York, 1964. | Zbl | MR