Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1995__29_4_435_0, author = {Haslinger, Jaroslav and Klarbring, Anders}, title = {Fictitious domain/mixed finite element approach for a class of optimal shape design problems}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {435--450}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {29}, number = {4}, year = {1995}, mrnumber = {1346278}, zbl = {0831.65072}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1995__29_4_435_0/} }
TY - JOUR AU - Haslinger, Jaroslav AU - Klarbring, Anders TI - Fictitious domain/mixed finite element approach for a class of optimal shape design problems JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1995 SP - 435 EP - 450 VL - 29 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_1995__29_4_435_0/ LA - en ID - M2AN_1995__29_4_435_0 ER -
%0 Journal Article %A Haslinger, Jaroslav %A Klarbring, Anders %T Fictitious domain/mixed finite element approach for a class of optimal shape design problems %J ESAIM: Mathematical Modelling and Numerical Analysis %D 1995 %P 435-450 %V 29 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://geodesic.mathdoc.fr/item/M2AN_1995__29_4_435_0/ %G en %F M2AN_1995__29_4_435_0
Haslinger, Jaroslav; Klarbring, Anders. Fictitious domain/mixed finite element approach for a class of optimal shape design problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 29 (1995) no. 4, pp. 435-450. http://geodesic.mathdoc.fr/item/M2AN_1995__29_4_435_0/
[1] On some imbedding methods applied to fluid dynamics and electro-magnetics, Computer Methods in Applied Mechanics and Engineering, 91, pp.1271-1299. | MR
, , , and , 1991,[2] Design sensitivity analysis of structural Systems, Academic Press, Orlando. | Zbl | MR
, and , 1986,[3] Optimal shape design for eliptic Systems, Springer-Verlag, New York. | Zbl | MR
, 1984,[4] Finite element approximation for optimal shape design : theory and applications, John Wiley, Chichester. | Zbl | MR
and , 1988,[5] Control/fictitious domain method for solving optimal design problems, M2AN 27(2), pp.157-182. | Zbl | MR | mathdoc-id
, and , 1993,[6] A fictitious domain method for Dirichlet problem and applications, Computer Methods in Applied Mechanics and Engineering, 111, pp.283-303. | Zbl | MR
, and , 1994,[7] Convex analysis and minimization algorithms II, Springer-Verlag, New York. | Zbl | MR
and , 1993,[8] A version of the bundie idea for minimizing a nonsmooth function : conceptual idea, convergence analysis, numerical results, SIAM J. Optimization, 2(1), pp.121-152. | Zbl | MR
and , 1992,[9] Numerical simulation and optimal shape for viscous flow by a fictitious domain method, to appear. | Zbl | MR
, , and , 1995,