Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1994__28_4_377_0, author = {Ewing, R. E. and Wang, J.}, title = {Analysis of multilevel decomposition iterative methods for mixed finite element methods}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {377--398}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {28}, number = {4}, year = {1994}, mrnumber = {1288504}, zbl = {0823.65035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1994__28_4_377_0/} }
TY - JOUR AU - Ewing, R. E. AU - Wang, J. TI - Analysis of multilevel decomposition iterative methods for mixed finite element methods JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1994 SP - 377 EP - 398 VL - 28 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_1994__28_4_377_0/ LA - en ID - M2AN_1994__28_4_377_0 ER -
%0 Journal Article %A Ewing, R. E. %A Wang, J. %T Analysis of multilevel decomposition iterative methods for mixed finite element methods %J ESAIM: Mathematical Modelling and Numerical Analysis %D 1994 %P 377-398 %V 28 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://geodesic.mathdoc.fr/item/M2AN_1994__28_4_377_0/ %G en %F M2AN_1994__28_4_377_0
Ewing, R. E.; Wang, J. Analysis of multilevel decomposition iterative methods for mixed finite element methods. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 28 (1994) no. 4, pp. 377-398. http://geodesic.mathdoc.fr/item/M2AN_1994__28_4_377_0/
[1] The finite element method with Lagrangian multipliers, Numer, Math., 20, 179-192. | Zbl | MR
, 1973,[2] An optimal order process for solving elliptic finite element equations, Math. Comp., 36, 35-51. | Zbl | MR
and , 1981,[3] The Hierarchical basis multigrid method, Numer. Math., 52, 427-458. | Zbl | MR
, and , 1988,[4] A preconditioning technique for the efficient solution of problems with local grid refinement, Compt. Meth. Appl. Mech. Eng., 67, 149-159. | Zbl
, , and , 1988,[5] Convergence estimates for product iterative methods with applications to domain decomposition, Math. Comp., 57, 1-22. | Zbl | MR
, , and , 1991,[6] Convergence estimate for multigrid algorithms without regularity assumptions, Math. Comp., 57, 23-45. | Zbl | MR
, , and , 1911,[7] On the existence, uniqueness, and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O., Anal. Numér., 2, 129-151. | Zbl | MR | mathdoc-id
, 1974,[8] Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O., Anal. Numér., 21, 581-604. | Zbl | MR | mathdoc-id
, , and , 1987,[9] Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47, 217-235. | Zbl | MR
, and , 1985,[10] Global estimates for mixed finite element methods for second order elliptic equations, Math. Comp., 45, 39-52. | Zbl | MR
and ,[11] Analysis of the Schwarz algorithm for mixed finite element methods, R.A.I.R.O. M2AN, 26, 739-756. | Zbl | MR | mathdoc-id
and , 1992,[12] An additive variant of the Schwarz alternating method for the case of many subregions, Technical Report, Courant Institute of Mathematical Sciences, 339.
and , 1987,[13] Some domain decomposition algorithms for elliptic problems, Technical Report, Courant Institute of Mathematical Sciences, 438. | MR
and , 1989,[14] Error estimates for mixed methods, R.A.I.R.O., Anal. Numér., 14, 249-277. | Zbl | MR | mathdoc-id
and , 1980,[15] An analysis of the convergence of mixed finite element methods, R.A.I.R.O., Anal. Numér., 11, 341-354. | Zbl | MR | mathdoc-id
,[16] Domain decomposition and mixed finite element methods for elliptic problems, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Dijferential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). | Zbl | MR
and , 1988,[17] Multi-Grid Methods and Applications, Springer-Verlag, New York. | Zbl
, 1985,[18] On the Schwarz alternating method, Proceedings of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations (R. Glowinski, G. H. Golub, G. A. Meurant and J. Périaux, eds.). | Zbl | MR
, 1988,[19] Domain Decomposition and Iterative Refinement Methods for Mixed Finite Element Discretizations of Elliptic Problems, Ph. D. Thesis, New York University.
, 1989,[20] A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of Finite Element Methods, Lecture Notes in Mathematics (606), Springer-Verlag, Berlin and New York, 292-315. | Zbl | MR
and , 1977,[21] Über einige Abbildungsaufgaben, Ges. Math. Abh., 11, 65-83.
, 1869,[22] Convergence analysis without regularity assumptions for multigrid algorithms based on SOR smoothing, SIAM J. Numer. Anal., 29, 987-1001. | Zbl | MR
, 1992,[23] Convergence analysis of Schwarz algorithm and multilevel decomposition iterative methods I : selfadjoint and positive definite elliptic problems, in Iterative Methods in Linear Algebra, R. Beauwens and P. de Groen (eds.), North-Holland, Amsterdam. | Zbl | MR
, 1992,[24] Convergence analysis of the Schwarz algorithm and multilevel decomposition iterative methods II : non-selfadjoint and indefinite elliptic problems, SIAM J. Numer. Anal., 30, 953-970. | Zbl | MR
, 1993,[25] On the multi-level splitting of finite element spaces, Numer. Math., 49, 379-412. | Zbl | MR
, 1986,