Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1991__25_1_111_0, author = {Lippold, G\"unter}, title = {Error estimates and step-size control for the approximate solution of a first order evolution equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {111--128}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {25}, number = {1}, year = {1991}, mrnumber = {1086843}, zbl = {0724.65065}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1991__25_1_111_0/} }
TY - JOUR AU - Lippold, Günter TI - Error estimates and step-size control for the approximate solution of a first order evolution equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1991 SP - 111 EP - 128 VL - 25 IS - 1 PB - AFCET - Gauthier-Villars PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_1991__25_1_111_0/ LA - en ID - M2AN_1991__25_1_111_0 ER -
%0 Journal Article %A Lippold, Günter %T Error estimates and step-size control for the approximate solution of a first order evolution equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 1991 %P 111-128 %V 25 %N 1 %I AFCET - Gauthier-Villars %C Paris %U http://geodesic.mathdoc.fr/item/M2AN_1991__25_1_111_0/ %G en %F M2AN_1991__25_1_111_0
Lippold, Günter. Error estimates and step-size control for the approximate solution of a first order evolution equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 25 (1991) no. 1, pp. 111-128. http://geodesic.mathdoc.fr/item/M2AN_1991__25_1_111_0/
[1] Error estimates over infinite intervals of some discretizations of evolution equations, BIT 24 (1984), 413-429 | Zbl | MR
,[2] Error estimates for adaptive finite element computations, SIAM J Numer Anal 75 (1978), 736-754 | Zbl | MR
and ,[3] An adaptive method of lines with error control for parabolic equations of the reaction-diffusion type, J Comp Phys 63 (1986), 33-66 | Zbl | MR
and ,[4] Time discretization of par abolie problems by the discontinuons Galerkin method, M2AN 19 (1985), 611-643 | Zbl | MR | mathdoc-id
, and ,[5] Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Akademie-Verlag, Berlin, 1974 | Zbl | MR
, and ,[6] Discrete-time Galerkin methods for nonlinear evolution equations, Math Nachr 84 (1978), 247-275 | Zbl | MR
,[7] An a posteriori error estimate for a backward Euler discretization of a parabolic problem, SIAM J Numer Anal, 27 (1990), 277-291 | Zbl | MR
, and ,[8] Method of Rothe in evolution equations, Teubner Leipzig, 1985 | Zbl | MR
,[9] Problèmes aux limites non homogènes et applications I, Dunod, Paris, 1968 | Zbl
and ,[10] Adaptive approximation, ZAMM 67 (1987), 453-465 | Zbl | MR
,[11] On the smoothing property of the Galerkin method for par abolic equations, SIAM J Numer Anal 19 (1981), 93-113 | Zbl | MR
and ,[12] Application of Rothe's method to abstract parabohe equations, Czech Math J 24 (1974), 496-500 | Zbl | MR | EuDML
,[13] Sur l'approximation de certaines équations d'évolution linéaires et non linéaires, J Math Pures Appl 46 (1967), 11-107, 109-183 | Zbl
,[14] An adaptive method for linear parabolic partial differential equations, ZAMM 67 (1987), 557-565 | Zbl | MR
,[15] Zweidimensionale parabolische Randwertaufgaben als Grenzfall eindimensionaler Randwertaufgaben, Math. Ann. 102 (1930), 650-670. | MR | JFM | EuDML
,[16] Stability and convergence in the PDE/stiff ODE interphase, Report NM-R8619, Centre for Mathematics and Computer Science Amsterdam, 1986.
and ,[17] On Galerkin methods in semilinear parabolic problems, SIAM J. Numer. Anal. 12 (1975), 378-389. | Zbl | MR
and ,[18] An H-1 Galerkin method for a parabolic problem in a single space variable, SIAM J. Numer. Anal. 12 (1975), 803-817. | Zbl | MR
,