Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1985__19_4_519_0, author = {Bramble, James H. and Falk, Richard S.}, title = {A {mixed-Lagrange} multiplier finite element method for the polyharmonic equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {519--557}, publisher = {AFCET - Gauthier-Villars}, address = {Paris}, volume = {19}, number = {4}, year = {1985}, mrnumber = {826223}, zbl = {0591.65073}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1985__19_4_519_0/} }
TY - JOUR AU - Bramble, James H. AU - Falk, Richard S. TI - A mixed-Lagrange multiplier finite element method for the polyharmonic equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1985 SP - 519 EP - 557 VL - 19 IS - 4 PB - AFCET - Gauthier-Villars PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_1985__19_4_519_0/ LA - en ID - M2AN_1985__19_4_519_0 ER -
%0 Journal Article %A Bramble, James H. %A Falk, Richard S. %T A mixed-Lagrange multiplier finite element method for the polyharmonic equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 1985 %P 519-557 %V 19 %N 4 %I AFCET - Gauthier-Villars %C Paris %U http://geodesic.mathdoc.fr/item/M2AN_1985__19_4_519_0/ %G en %F M2AN_1985__19_4_519_0
Bramble, James H.; Falk, Richard S. A mixed-Lagrange multiplier finite element method for the polyharmonic equation. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 19 (1985) no. 4, pp. 519-557. http://geodesic.mathdoc.fr/item/M2AN_1985__19_4_519_0/
[1] Solution of linear Systems of équations : itérative methods. Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer Verlag, 1977. | Zbl | MR
,[2] The finite element method with Lagrangian multipliers, Numer. Math., 20 (1973), pp. 179-192. | Zbl | MR
,[3] Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | Zbl | MR
and ,[4] The Lagrange multiplier method for Dirichlet's Problem, Math.Comp., 37 (1981), pp. 1-11 | Zbl | MR
,[5] TWO mixed finite element methods for the simply supported plate problem, R.A.I.R.O., Analyse numérique, 17 (1983), pp. 337-384. | Zbl | MR | mathdoc-id
and ,[6] Rate of convergence estimates for non-selfadjoint eigenvalue approximations. Math. Comp.. 27 (1973). pp. 525-549 | Zbl | MR
and ,[7] A new computational approach for the linearized scalar potential formulation of the magnetostatic field problem, EEE Transactions on Magnetics, Vol Mag-18, (1982), pp. 357-361.
and ,[8] Simultaneous approximation in scales of Banach spaces, Math. Comp., 32 (1978), pp.947-954. | Zbl | MR
and ,[9] A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. | Zbl | MR
and ,[10] Dual itérative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp.277-295. | Zbl | MR
and ,[11] Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp.556-567. | Zbl | MR
,[12] Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. | Zbl | MR
and ,[13] Problèmes Aux Limites non Homogènes et Applications, Vol 1, Dunod, Paris, 1968. | Zbl | MR
and ,[14] On estimates andregularity II, Math. Scand., 13 (1963), pp. 47- | Zbl | MR
,