Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1983__17_4_337_0, author = {Bramble, James H. and Falk, Richard S.}, title = {Two mixed finite element methods for the simply supported plate problem}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {337--384}, publisher = {Centrale des revues, Dunod-Gauthier-Villars}, address = {Montreuil}, volume = {17}, number = {4}, year = {1983}, mrnumber = {713765}, zbl = {0536.73063}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1983__17_4_337_0/} }
TY - JOUR AU - Bramble, James H. AU - Falk, Richard S. TI - Two mixed finite element methods for the simply supported plate problem JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1983 SP - 337 EP - 384 VL - 17 IS - 4 PB - Centrale des revues, Dunod-Gauthier-Villars PP - Montreuil UR - http://geodesic.mathdoc.fr/item/M2AN_1983__17_4_337_0/ LA - en ID - M2AN_1983__17_4_337_0 ER -
%0 Journal Article %A Bramble, James H. %A Falk, Richard S. %T Two mixed finite element methods for the simply supported plate problem %J ESAIM: Mathematical Modelling and Numerical Analysis %D 1983 %P 337-384 %V 17 %N 4 %I Centrale des revues, Dunod-Gauthier-Villars %C Montreuil %U http://geodesic.mathdoc.fr/item/M2AN_1983__17_4_337_0/ %G en %F M2AN_1983__17_4_337_0
Bramble, James H.; Falk, Richard S. Two mixed finite element methods for the simply supported plate problem. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 17 (1983) no. 4, pp. 337-384. http://geodesic.mathdoc.fr/item/M2AN_1983__17_4_337_0/
[1] Solution of linear systems of equations : iterative methods, Sparse Matrix Techniques, V. A. Barker (editor), Lecture Notes in Mathematics 572, Springer-Verlag, 1971. | Zbl | MR
,[2] Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (Editor), Academic Press, New York, 1972. | Zbl | MR
and ,[3] The finite element method with Lagrangian multipliers, Numer. Math. 20 (1973), pp. 179-192. | Zbl | MR | EuDML
,[4] Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973), pp. 525-549. | Zbl | MR
and ,[5] Some Uniqueness Theorems in the Theory of Elasticity, Arch. for Rat. Mech. and Anal., 9 (1962), pp. 319-328. | Zbl | MR
and ,[6] Simultaneous approximation in scales of Banach spaces, Math. Comp. 32 (1978), pp. 947-954. | Zbl | MR
and ,[7] The lagrange multiplier method for Dirichlet's problem, Math. Comp. 37 (1981), pp. 1-11. | Zbl | MR
,[8] A mixed finite element method for the biharmonic equation, Symposium on Mathematical Aspects of Finite Elements in Partial Differential Equations, C. DeBoor, Ed., Academic Press, New York, 1974, pp. 125-143. | Zbl | MR
and ,[9] Dual iterative techniques for solving a finite element approximation of the biharmonic equation, Comput. Methods Appl. Mech. Engrg., 5 (1975), pp. 277-295. | Zbl | MR
and ,[10] Approximation of the biharmonic equation by a mixed finite element method, SIAM J. Numer. Anal., 15 (1978), pp. 556-567. | Zbl | MR
,[11] Numerical Methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Review, 21 (1979), pp. 167-212. | Zbl | MR
and ,[12] Problèmes aux limites non homogènes et applications, vol. 1, Dunod, Paris, 1968. | Zbl | MR
and ,[13] On On estimates and regularity II, Math. Scand. 13 (1963), pp. 47-69. | Zbl | MR
,[14] Calculus of Variations, McGraw-Hill, New York, 1952. | Zbl
,