L -convergence of finite element Galerkin approximations for parabolic problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 13 (1979) no. 1, pp. 31-54.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1979__13_1_31_0,
     author = {Nitsche, Joachim A.},
     title = {$L_\infty $-convergence of finite element {Galerkin} approximations for parabolic problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {31--54},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {13},
     number = {1},
     year = {1979},
     mrnumber = {527037},
     zbl = {0401.65069},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1979__13_1_31_0/}
}
TY  - JOUR
AU  - Nitsche, Joachim A.
TI  - $L_\infty $-convergence of finite element Galerkin approximations for parabolic problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1979
SP  - 31
EP  - 54
VL  - 13
IS  - 1
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://geodesic.mathdoc.fr/item/M2AN_1979__13_1_31_0/
LA  - en
ID  - M2AN_1979__13_1_31_0
ER  - 
%0 Journal Article
%A Nitsche, Joachim A.
%T $L_\infty $-convergence of finite element Galerkin approximations for parabolic problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1979
%P 31-54
%V 13
%N 1
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://geodesic.mathdoc.fr/item/M2AN_1979__13_1_31_0/
%G en
%F M2AN_1979__13_1_31_0
Nitsche, Joachim A. $L_\infty $-convergence of finite element Galerkin approximations for parabolic problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 13 (1979) no. 1, pp. 31-54. http://geodesic.mathdoc.fr/item/M2AN_1979__13_1_31_0/

Part a: literature cited

1. D. Archer, An O(h4) cubic spline collocation method for quasilinear parabolic equations, S.I.A.M, J. Numer. Anal., 14, 1977, p. 620-637. | Zbl | MR

2. J. H. Bramble and R. Scott, Simultaneous approximation in scales of Banach spaces (to appear). | Zbl | MR

3. J. H. Bramble, A. Schatz, V. Thomee and L. B. Wahlbin, Some convergence estimates for semidiscrete Galerkin type approximations for parabolic equations, S.I.A.M., J. Numer. Anal, 14, 1977, p. 218-241. | Zbl | MR

4. J. C. Cavendish and C. A. Hall, L∞-convergence of collocation and Galerkin approximations to linear two-point parabolic problems, Aequationes Math , 11, 1974, p. 230-249. | Zbl | MR

5. P. G. Ciarlet and P.-A. Raviart , Interpolation theory over curved elements with applications to finite element methods, Comp. Meth. Appl. Mech. Eng., l, 1972, p. 217-249. | Zbl | MR

6. J. Jr. Douglas and T. Dupont, A finite element collocation method for quasilinear parabolic equations, Math. Comp, 27, 1973, p. 17-18. | Zbl | MR

7. J. Jr. Douglas, T. Dupont and M. Wheeler, Some superconvergence results for an H1-Galerkin procedure for the heat equation, Lecture Notes in Comp. Sci, 10, 1974,p. 491-504. | Zbl | MR

8. F. Natterer, Uber punktweise Konvergenz finiter Elemente, Num. Math., 25, 1975, p. 67-77. | Zbl | MR

9. J. Nitsche, Zur Konvergenz von Naherungsverfahren bezüglich verschiedener Normen, Num. Math., 15, 1970, p. 224-228. | Zbl | MR

10. J. Nitsche, L∞-convergence of finite element approximation. 2nd Conference on Finite Elements, Rennes, 1975. | Zbl

11. J. Nitsche, Über L∞-Abschatzungen von Projektionen auf finite Elemente, Bonner Mathematische Schriften, 89, 1976, p. 13-30. | Zbl | MR

12. J. Nitsche, L∞-convergence of finite element approximations, Lecture Notes in Math., 606, 1977, p. 261-274. | Zbl | MR

13. J. Nitsche and A. Schatz, On local approximation properdes of L2-projection on spline-subspaces, Appl Anal., 2, 1972, p. 161-168. | Zbl | MR

14. R. Scott, Optimal L∞ estimates for the finite element method on irregular meshes, Math. Comp., 30, 1976, p. 681-697. | Zbl | MR

15. V. Thomée, Spline-Galerkin methods for initial-value problems with constant coefficients, Lecture Notes in Math., 363, 1974, p. 164-175. | Zbl | MR

16. L. Wahlbin, On maximum norm error estimates for Galerkin approximation to one-dimensional second order parabolic boundary value problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 177-182. | Zbl | MR

17. M. B. Wheeler, L∞ estimates of optimal orders for Galerkin methods of one dimensional second order parabolic and hyperbolic equations, S.I.A.M., J. Numer. Anal., 10, 1973, p. 908-913. | Zbl | MR

18. M. Zlamal, Curved elements in the finite element method, S.I.A.M., J. Numer. Anal., 10, 1973, p. 229-240 and 11, 1974, p. 347-362. | Zbl

Part b: additionat literature

19. R. S. Anderssen, The numerical solution of parabolic differential equations using variational methods, Numer. Math., 13 1969, p. 129-145. | Zbl | MR

20. R. S. Nderssen, A class of densely invertible parabolic operator equations, Bull. Austral Math. Soc, 1, 1969, p. 363-374. | Zbl | MR

21. G. A. Baker, J. Bramble and V. Thomée, Single step Galerkin approximations or parabolic problems, Math. Comp., 31, 1977, p. 818-847. | Zbl | MR

22. W. E. Bosarge Jr., O. G. Johnson and C. L. Smith, A direct method approximation to the linear parabolic regulator problem over multivaraite spline bases, S.I.A.M., J. Numer. Anal, 10, 1973, p. 35-49. | Zbl | MR

23. J. H. Bramble and V. Thomée, Semidiscrete-least squares methods for a parabolic boundary value problem, Math. Comp., 26, 1972,p. 633-648. | Zbl | MR

24. J. Descloux, On the numerical integration of the heat equation, Numer. Math.,15, 1970, p. 371-381. | Zbl | MR

25. J. Douglas Jr., A survey of methods for parabolic differential equations, Advances in Computers, 2, 1961, p. 1-54. | Zbl | MR

26. J. Douglas Jr. and T. Dupont, The numerical solution of waterflooding problems in petroleum engineering by variational methods, Studies in Numer. Anal., 2, 1968, p. 53-63. | Zbl | MR

27. J. Douglas Jr. and T. Dupont, Galerkin methods for parabolic equations, S.I.A.M., J. Numer. Anal., 7, 1970, p. 575-626. | Zbl | MR

28. J. Douglas Jr. and T. Dupont, A finite element collocation method for the heat equation, Symposia Mathematica, 10, 1972, p, 403-410. | Zbl | MR

29. J. Douglas Jr. and T. D Upont, A finite element collocation method for nonlinear parabolic equations, Math. Comp., 27, 1973, p. 17-28. | Zbl | MR

30. J. Douglas Jr. and T. Dupont, Galerkin methods for parabolic equations with nonlinear boundary conditions, Numer. Math., 20, 1973, p. 213-237. | Zbl | MR

31. J. Douglas Jr. and T. Dupont, Collocation methods for parabolic equations in a single space variable (based on C1-piecewise-polynomial spaces), Lecture Notes in Math., 385, 1974. | Zbl | MR

32. J. Douglas Jr., T. Dupont and P. Percell, A time-stepping method for Galerkin approximations for nonlinear parabolic equations (to appear). | Zbl | MR

33. T. Dupont, L2 error estimates for projection methods for parabolic equations in approximating domains, Mathematical aspects of finite elements in partial differential equations, ed. de Boor, Academic Press, New York, 1974, p. 313-352 | Zbl | MR

34. B. A. Finlayson, Convergence of the Galerkin method for nonlinear problems involving chemical reaction, S.I.A.M., J. Numer. Anal., 8, 1971, p. 316-324. | Zbl | MR

35. G. Fix and N. Nassif, On finite element approximation to time dependent problems, Numer. Math., 19, 1972, p. 127-135. | Zbl | MR

36. H. Gajewski and K. Zacharias, Zur starken Konvergenz des Galerkinverfahrens bei einer Klasse pseudo-parabolischer partieller Differentialgleichungen, Math. Nachr., 47, 1970, p. 365-376. | Zbl | MR

37. G. Geymonat and M. Sibony, Approximation de certaines équations paraboliques non linéaires, Calcolo, 13, 1976, p. 213-256. | Zbl | MR

38. H.-P. Helfrich, Fehlerabschätzungen für das Galerkinverfahren zur Lösung von Evolutionsgleichungen, Manuscripta math., 13, 1974, p. 219-235. | Zbl | MR

39. H.-P. Helfrich, Lokale Konvergenz des Galerkinverfahrens bei Gleichungen vom parabolischen Typ in Hilberträumen (to appear).

40. I. Hlavacek, Variational principles for parabolic equations, Api. Mat., 14, 1969, p. 278-297. | Zbl | MR

41. I. Hlavacek, On a semi-variational method for parabolic equations II, Apl. Math., 18, 1973, p. 43-64. | Zbl | MR

42. D. C. Joyce, Survey of extrapolation processes in numerical analysis, S.I.A.M., Rev., 13, 1971, p. 435-490. | Zbl | MR

43. J. T. King, The approximate solution of parabolic initial boundary value problems by weighted least-squares methods, S.I.A.M., J. Numer. Anal., 9, 1972, p. 215-229. | Zbl | MR

44. H. D. Meyer, The numerical solution of nonlinear parabolic problems by variational Methods, S.I.A.M., J. Numer. Anal., 10, 1973, p. 700-722. | Zbl | MR

45. P.A. Raviart, Approximation des équations d'évolution par des méthodes variationnelles, Numer. Anal, of part. diff. equations, éd. J. L. Lions, C.I.M.E., 1968, p. 359-406. | MR

46. P. A. Raviart, The use of numerical integration in finite element methods for solving parabolic equations, Topics in Numer. Anal., éd.J. J. Miller, Academic Press, 1973, p. 233-264. | Zbl | MR

47. R. E. Showalter, A priori error estimates for approximation of parabolic boundary value problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 456-463. | Zbl | MR

48. P. E. Sobolevsk Ii, The Bubnov-Galerkin method for parabolic equations in Hilbert space, S.M.D., 9, 1968, p. 154-157. | Zbl | MR

49. V. Thomée, Convergence estimates for semi-discrete Galerkin methods for initial value problems, Lecture Notes in Math., 333, 1973, p. 243-262. | Zbl | MR

50. V. Thomée, Some convergence results for Galerkin methods for parabolic boundary value problems, Math. Aspects of Finite Elements in Partial Diff. Equ., ed. C de Boor, Academic Press, New York, 1974, p. 55-88. | Zbl | MR

51. V. Thomée and L. Wahlbin, On Galerkin methods in semilinear parabolic problems, S.I.A.M., J. Numer. Anal., 12, 1975, p. 378-389. | Zbl | MR

52. B. Wendroff, Spline-Galerkin methods for initial value problems with variable coefficients, Lecture Notes in Math., 363, 1974, p. 189-195. | Zbl | MR

53. M. B. Wheeler, An H -1 Galerkin method for parabolic problems in a single space variable, S.I.A.M., J. Numer, Anal., 12, 1975, p. 803-817. | Zbl | MR

54. M. Zlamal, Finite element methods for nonlinear parabolic equations, R.A.I.R.O. Anal. Num., 11, 1977, p. 93-107. | Zbl | MR | mathdoc-id