The finite element method for ill-posed problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 11 (1977) no. 3, pp. 271-278.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1977__11_3_271_0,
     author = {Natterer, Frank},
     title = {The finite element method for ill-posed problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {271--278},
     publisher = {Centrale des revues, Dunod-Gauthier-Villars},
     address = {Montreuil},
     volume = {11},
     number = {3},
     year = {1977},
     mrnumber = {519587},
     zbl = {0369.65012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1977__11_3_271_0/}
}
TY  - JOUR
AU  - Natterer, Frank
TI  - The finite element method for ill-posed problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1977
SP  - 271
EP  - 278
VL  - 11
IS  - 3
PB  - Centrale des revues, Dunod-Gauthier-Villars
PP  - Montreuil
UR  - http://geodesic.mathdoc.fr/item/M2AN_1977__11_3_271_0/
LA  - en
ID  - M2AN_1977__11_3_271_0
ER  - 
%0 Journal Article
%A Natterer, Frank
%T The finite element method for ill-posed problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1977
%P 271-278
%V 11
%N 3
%I Centrale des revues, Dunod-Gauthier-Villars
%C Montreuil
%U http://geodesic.mathdoc.fr/item/M2AN_1977__11_3_271_0/
%G en
%F M2AN_1977__11_3_271_0
Natterer, Frank. The finite element method for ill-posed problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 11 (1977) no. 3, pp. 271-278. http://geodesic.mathdoc.fr/item/M2AN_1977__11_3_271_0/

1. A. K. Aziz and I. Babuska, Survey Lectures on the Mathematical Foundations of the Finite Element Method. In : Aziz, A. K. (ed.) : The Mathematical Foundations of the Finite Element Method with Application to Partial Differential Equations, Academic Press, 1972. | Zbl | MR

2. I. Cea, Optimisation, Théorie et Algorithmes. Dunod, Paris, 1971. | Zbl | MR

3. J. N. Franklin. On Tikhonov's Method for Ill-Posed Problems. Math. Comp. 28. 1974, p. 889-907 | Zbl | MR

4. B. Guenther, E. K. Killian, K. T. Smith and S. L. Wagner, Reconstruction of objects form Radiographs and the Location of Brain Tumors. Proc. at. Acad. Sci. USA. 71, 1974 p. 4884-4886. | MR

5. L. L. Lions et E. Magnes, Problème avec limites non homogènes et applications, vol. 1. Dunod, Paris, 1968. | Zbl

6. D. Ludwig, The Radon Transform on Euclidean Space. Comm. Pure Applied Math. 19, 1966, 49-81. | Zbl | MR

7. R. Mittra and C. A. Klein, Stability and Convergence of Moment Method Solutions. In : MITTRA, R. (ed) : Numerical and Asymptotic Techniques in Electromagnetics, Spinger, 1975.

8. D. L. Philipps. A Technique for the Numerical Solution of Certain Integral Equations ofthe First Kind. J. Ass. Comp. Mach. 9, 1962, p. 84-97. | Zbl | MR

9. G. Ribière, Régularisation d'opérateurs. R.I.R.O., 1, 1967, p. 57-79. | Zbl | MR | mathdoc-id

10. A. N. Tikhonov, The Regularization of Incorrectly Posed Problems. Dokl. Akad. Nauk SSSR, 153, 1963, p. 42-52. | Zbl