Convergence analysis of finite difference schemes for semi-linear initial-value problems
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 10 (1976) no. R2, pp. 61-86.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1976__10_2_61_0,
     author = {L\"ofstr\"om, J. and Thom\'ee, V.},
     title = {Convergence analysis of finite difference schemes for semi-linear initial-value problems},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {61--86},
     publisher = {Dunod},
     address = {Paris},
     volume = {10},
     number = {R2},
     year = {1976},
     mrnumber = {488816},
     zbl = {0332.35006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_61_0/}
}
TY  - JOUR
AU  - Löfström, J.
AU  - Thomée, V.
TI  - Convergence analysis of finite difference schemes for semi-linear initial-value problems
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1976
SP  - 61
EP  - 86
VL  - 10
IS  - R2
PB  - Dunod
PP  - Paris
UR  - http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_61_0/
LA  - en
ID  - M2AN_1976__10_2_61_0
ER  - 
%0 Journal Article
%A Löfström, J.
%A Thomée, V.
%T Convergence analysis of finite difference schemes for semi-linear initial-value problems
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1976
%P 61-86
%V 10
%N R2
%I Dunod
%C Paris
%U http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_61_0/
%G en
%F M2AN_1976__10_2_61_0
Löfström, J.; Thomée, V. Convergence analysis of finite difference schemes for semi-linear initial-value problems. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 10 (1976) no. R2, pp. 61-86. http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_61_0/

1. R. Ansorge, C. Geiger and R. Hass, Existenz und numerische Erfassbarkeit verallgemeinerter Losungen halblinearer Anfangswertaufgaben, Z. Angew. Math. Mech., Vol. 52, 1972, pp. 597-605. | Zbl | MR

2. R. Ansorge and R. Hass, Konvergenz von Differenzenverfahren für lineare und nichtlineare Anfangswertaufgaben. Lecture Notes in Mathematics, n° 159, Springer-Verlag, Berlin-Heidelberg-New York, 1970. | Zbl | MR

3. P. Brenner, V. Thomée and L. B. Wahlbin, Besov Spaces and Applications to Difference Methods for Initial Value Problems, Lecture Notes in Mathematics, n° 434, Springer-Verlag, Berlin-Heidelberg-New York, 1975. | Zbl | MR

4. P. L. Butzer and H. Berens, Semi-groups of Operators and Approximation. Springer-Verlag, Berlin-Heidelberg-New York, 1967. | Zbl | MR

5. K. Jörgens, Das Anfangswertproblem in Grossen für eine klasse nichtlinearer Wellengleichungen, Math. Z., Vol. 77, 1961, pp. 295-308. | Zbl | MR

6. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod - Gauthier-Villars, Paris, 1969. | Zbl | MR

7. J. Löfström, Besov Spaces in the Theory of Approximation, Ann. Mat. Pura Appl., Vol. 55, 1970, pp. 93-184. | Zbl | MR

8. J. Peetre, Espaces d'interpolation et théorème de Soboleff, Ann. Inst. Fourier, Vol. 16, 1966, pp. 279-317. | Zbl | MR | mathdoc-id

9. Peetre, Applications de la théorie des espaces d'interpolation dans l'analyse harmonique, Ricerche Mat., Vol. 15, 1966, pp. 1-36. | Zbl

10. J. Peetre, Interpolation of Lipschitz Operators and Metric Spaces, Mathematica, 12, (35), No. 2, 1970, pp. 325-334. | Zbl | MR

11. I. E . Segal, Non-Linear Semi-Groups, Ann. Math., 78, 1963, pp. 339-364. | Zbl | MR

12. V. Thomée, Convergence Analysis of a Finite Difference Scheme for a Simple Semi-Linear Hyperbolic Equation (Numerische Behandlung nichtlinearer Integrodifferential- und Differentialgleichungen), Lecture Notes in Mathematics, n° 395, Springer-Verlag, Berlin-Heidelberg-New York, 1974, pp. 149-166. | Zbl | MR

13. V. Thomée, On the Rate of Convergence of Différence Schemes for Hyperbolic Equations (Numerical Solutions of Partial Differential Equations II), Ed. B. HUBBARD, Academic Press, New York, 1971, pp. 585-622.. | Zbl