A Ritz method based on a complementary variational principle
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 10 (1976) no. R2, pp. 39-48.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1976__10_2_39_0,
     author = {Falk, Richard S.},
     title = {A {Ritz} method based on a complementary variational principle},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {39--48},
     publisher = {Dunod},
     address = {Paris},
     volume = {10},
     number = {R2},
     year = {1976},
     mrnumber = {433915},
     zbl = {0363.65084},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/}
}
TY  - JOUR
AU  - Falk, Richard S.
TI  - A Ritz method based on a complementary variational principle
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1976
SP  - 39
EP  - 48
VL  - 10
IS  - R2
PB  - Dunod
PP  - Paris
UR  - http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/
LA  - en
ID  - M2AN_1976__10_2_39_0
ER  - 
%0 Journal Article
%A Falk, Richard S.
%T A Ritz method based on a complementary variational principle
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1976
%P 39-48
%V 10
%N R2
%I Dunod
%C Paris
%U http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/
%G en
%F M2AN_1976__10_2_39_0
Falk, Richard S. A Ritz method based on a complementary variational principle. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 10 (1976) no. R2, pp. 39-48. http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/

1. A. M. Arthurs, Complementary Variational Principles, , Clarendon Press, Oxford, 1970. | Zbl | MR

2. I. Babuska, Approximation by Hill Functions, Commentations Math. Univ. Carolinae, Vol. 11, 1970, p. 387-811. | Zbl | MR

3. I. Babuska, Approximation by Hill Functions, II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.

4. I. Babuska, The Finite Element Method with Lagrangian Multipliers, Numer. Math. 20, 1973, p. 179-192. | Zbl | MR

5. I. Babuska, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | Zbl | MR

6. J. L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 1, Paris, Dunod, 1968. | Zbl | MR

7. G. Strang and G. Fix, An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. | Zbl | MR