Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1976__10_2_39_0, author = {Falk, Richard S.}, title = {A {Ritz} method based on a complementary variational principle}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {39--48}, publisher = {Dunod}, address = {Paris}, volume = {10}, number = {R2}, year = {1976}, mrnumber = {433915}, zbl = {0363.65084}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/} }
TY - JOUR AU - Falk, Richard S. TI - A Ritz method based on a complementary variational principle JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1976 SP - 39 EP - 48 VL - 10 IS - R2 PB - Dunod PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/ LA - en ID - M2AN_1976__10_2_39_0 ER -
Falk, Richard S. A Ritz method based on a complementary variational principle. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 10 (1976) no. R2, pp. 39-48. http://geodesic.mathdoc.fr/item/M2AN_1976__10_2_39_0/
1. Complementary Variational Principles, , Clarendon Press, Oxford, 1970. | Zbl | MR
,2. Approximation by Hill Functions, Commentations Math. Univ. Carolinae, Vol. 11, 1970, p. 387-811. | Zbl | MR
,3. Approximation by Hill Functions, II, Technical Note BN-708, Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, 1971.
,4. The Finite Element Method with Lagrangian Multipliers, Numer. Math. 20, 1973, p. 179-192. | Zbl | MR
,5. The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz (editor), Academic Press, New York, 1972. | Zbl | MR
,6. Problèmes aux limites non homogènes et applications, Vol. 1, Paris, Dunod, 1968. | Zbl | MR
, ,7. An Analysis of the Finite Element Method, Prentice Hall, Englewood Cliffs, N.J., 1973. | Zbl | MR
and ,