Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1974__8_2_119_0, author = {\v{Z}en{\'\i}\v{s}ek, Alexander}, title = {A general theorem on triangular finite $C^{(m)}$-elements}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {119--127}, publisher = {Dunod}, address = {Paris}, volume = {8}, number = {R2}, year = {1974}, mrnumber = {388731}, zbl = {0321.41003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_119_0/} }
TY - JOUR AU - Ženíšek, Alexander TI - A general theorem on triangular finite $C^{(m)}$-elements JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1974 SP - 119 EP - 127 VL - 8 IS - R2 PB - Dunod PP - Paris UR - http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_119_0/ LA - en ID - M2AN_1974__8_2_119_0 ER -
Ženíšek, Alexander. A general theorem on triangular finite $C^{(m)}$-elements. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 8 (1974) no. R2, pp. 119-127. http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_119_0/
[1] A refined triangular plate bending finite element Int. J. Num. Meth. Engng., 1969, 1, 101-122.
,[2] Triangular elements in the finite element method. Math. Comp., 1970, 24, 809-820. | Zbl | MR
and ,[3] Piecewise polynomial interpolations in the finite element method. Apl.Mat., 1973, 18, 146-160. | Zbl | MR
,[4] An analysis of the finite element method. Prentice-Hall Inc., Englewood Cliffs, N. J., 1973. | Zbl | MR
and ,[5] Interpolation polynomials on the triangle. Numer. Math., 1970, 15, 283-296. | Zbl | MR
,[6] Polynomial approximation on tetrahedrons in the finite element method.J. Approx. Theory, 1973, 7, 334-351. | Zbl | MR
,