A dissipative Galerkin method applied to some quasilinear hyperbolic equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 8 (1974) no. R2, pp. 109-117.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1974__8_2_109_0,
     author = {Wahlbin, Lars B.},
     title = {A dissipative {Galerkin} method applied to some quasilinear hyperbolic equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {109--117},
     publisher = {Dunod},
     address = {Paris},
     volume = {8},
     number = {R2},
     year = {1974},
     mrnumber = {368447},
     zbl = {0303.65092},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_109_0/}
}
TY  - JOUR
AU  - Wahlbin, Lars B.
TI  - A dissipative Galerkin method applied to some quasilinear hyperbolic equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1974
SP  - 109
EP  - 117
VL  - 8
IS  - R2
PB  - Dunod
PP  - Paris
UR  - http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_109_0/
LA  - en
ID  - M2AN_1974__8_2_109_0
ER  - 
%0 Journal Article
%A Wahlbin, Lars B.
%T A dissipative Galerkin method applied to some quasilinear hyperbolic equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1974
%P 109-117
%V 8
%N R2
%I Dunod
%C Paris
%U http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_109_0/
%G en
%F M2AN_1974__8_2_109_0
Wahlbin, Lars B. A dissipative Galerkin method applied to some quasilinear hyperbolic equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 8 (1974) no. R2, pp. 109-117. http://geodesic.mathdoc.fr/item/M2AN_1974__8_2_109_0/

[1] G. Birkhoff and G.-C. Rota, Ordinary Differential Equations, Secondary Differential Equations, Second edition, Xerox College Publishing, Lexington 1969. | Zbl | MR

[2] J. E. Dendy, Two methods of Galerkin type achieving optimum L2-accuracy for first order hyperbolics, to appear in SIAM, J. Numer. Anal. | Zbl | MR

[3] J. Jr. Douglas, T. Dupont and L. Wahlbin, Optimal L∞ error estimates for Galerkin approximations to solutions of two point boundary value problems, to appear in Math. Comp. | Zbl | MR

[4] T. Dupont, Galerkin methods for first order hyperbolics: An example SIAM J. Numer. Anal. 10(1973), 890-899. | Zbl | MR

[5] T. Dupont, L2-estimates for Galerkin methods for second order hyperbolic equations, SIAM J. Numer. Anal. 10(1973), 880-889. | Zbl | MR

[6] G. Fix and N. Nassif, On finite element approximations to time dependent problems, Numer. Math. 19(1972), 127-135. | Zbl | MR

[7] J. Nrrsche, Ein Kriterium für die Quasioptimalitat des Ritzschen Verfahrens, Numer. Math. 11(1968), 346-348. | Zbl | MR

[8] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial Value Problems, Second edition, Interscience, NewYork, 1967. | Zbl | MR

[9] V. Thomée, Spline approximation and différence schemes for the heat equation, The Mathematical Foundations of the Finite Element Method (University of Maryland at Baltimore), Academic Press, NewYork, 1973. | Zbl | MR

[10] L. Wahlbin, A dissipative Galerkin method for the numerical solution of first order hyperbolic equation, to appear in Mathematical Aspects of Finite Elements in Partial Differential Equations (MRC, University of Wisconsin at Madison), Academic Press. | Zbl

A [11] M. F. Wheeler, A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations, SIAM J. Numer. Anal, 10 (1973), 723-759. | Zbl | MR