On the convergence of optimization algorithms
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 3 (1969) no. R1, pp. 17-34.

Voir la notice de l'article provenant de la source Numdam

@article{M2AN_1969__3_1_17_0,
     author = {Polak, E.},
     title = {On the convergence of optimization algorithms},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {17--34},
     publisher = {Dunod},
     address = {Paris},
     volume = {3},
     number = {R1},
     year = {1969},
     mrnumber = {248968},
     zbl = {0174.47906},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_1969__3_1_17_0/}
}
TY  - JOUR
AU  - Polak, E.
TI  - On the convergence of optimization algorithms
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 1969
SP  - 17
EP  - 34
VL  - 3
IS  - R1
PB  - Dunod
PP  - Paris
UR  - http://geodesic.mathdoc.fr/item/M2AN_1969__3_1_17_0/
LA  - en
ID  - M2AN_1969__3_1_17_0
ER  - 
%0 Journal Article
%A Polak, E.
%T On the convergence of optimization algorithms
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 1969
%P 17-34
%V 3
%N R1
%I Dunod
%C Paris
%U http://geodesic.mathdoc.fr/item/M2AN_1969__3_1_17_0/
%G en
%F M2AN_1969__3_1_17_0
Polak, E. On the convergence of optimization algorithms. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 3 (1969) no. R1, pp. 17-34. http://geodesic.mathdoc.fr/item/M2AN_1969__3_1_17_0/

[1]. P. Wolfe, « On the Convergence of Gradient Methods under Constraints », IBM Research Report RZ-204, March 1, 1966, IBM Research Laboratory, Zurich, Switzerland.

[2], W. I. Zangwill, « Convergence Conditions for Nonlinear Programming Algorithms », Working Paper No 197, Center for Research in Management Science, University of California, Berkeley, California, November 1966.

[3]. D. M. Topkis, A. Veintott Jr., On the convergence of some feasible direction algorithms for nonlinear programming, J. SIAM Control, vol.5, n° 2, May 1967 p. 268. | Zbl | MR

[4]. E. Polak and M. Deparis, « An algorithm for minimum energy control », University of California, Electronics Research Laboratory, Berkeley, California, ERL Memorandum M225, November l, 1967.

[5]. G. Zoutendijk, « Methods of feasible directions: Astudy in linear and nonlinear programming », Elsevier, Amsterdam, 1960. | Zbl

[6]. J. B. Rosen, « The gradient projection method for nonlinear programming. Part I. Linear constraints », J. SIAM, vol. 8, n° 1, March 1960, pp. 181-217. | Zbl | MR

[7]. E. Polak, « On primal and dual methods for solving discrete optimal control problems », Proc. of the 2nd International Conference on Computing Methods in Optimization Problems, San Remo, Italy, September 9-13, 1968. | Zbl | MR

[8], E. Polak, G. Ribiere, « Note sur la convergence de méthodes de directions conjuguées ». | Zbl | mathdoc-id

[9]. P. Kalfon, G. Ribiere, J. C. Sogno, « A method of feasible directions using projection operators », Proc. IFIP Congress 68, Edinburgh, August 1968. | Zbl | MR

[10]. M. Cannon, C. Cullum and E. Polak, « Constrained minimization problems in finite dimensional spaces », J. SIAM Control,vol. 4, pp. 528-547, 1966. | Zbl | MR

[11]. H. W. Kuhn and A. W. Tucker, « Nonlinear programming», Proc. of the Second Berkeley Symposium on Mathematic Statistic and Probability, University of California Press, Berkeley, California, 1951, pp. 481-492. | Zbl | MR

[12]. J. Frehel, « Une méthode de programmation non linéaire», IBM France, Research Laboratory, Paris, étude n° FF2-0061-0, July 1968.