@article{LKN_2017_27_27_a0,
author = {N. A. Slavnov},
title = {Algebraic {Bethe} ansatz},
journal = {Lekcionnye kursy NOC},
pages = {3--189},
year = {2017},
volume = {27},
number = {27},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/LKN_2017_27_27_a0/}
}
N. A. Slavnov. Algebraic Bethe ansatz. Lekcionnye kursy NOC, Algebraic Bethe ansatz, Tome 27 (2017) no. 27, pp. 3-189. http://geodesic.mathdoc.fr/item/LKN_2017_27_27_a0/
[1] H. Bethe, “Eigenwerte und Eigenfunktionen Atomkete”, Zeitschrift für Physik, 71 (1931), 205–226 | DOI
[2] M. Goden, Volnovaya funktsiya Bete, Mir, Moskva, 1987 | MR
[3] V. E. Korepin, N. M. Bogolyubov, A. G. Izergin, Kvantovyi metod obratnoi zadachi i korrelyatsionnye funktsii, Nauka, Moskva, 1991 | MR
[4] E. K. Sklyanin, “Kvantovyi variant metoda obratnoi zadachi rasseyaniya”, Zap. nauchn. sem. LOMI, 95, 1980, 55–128 | MR | Zbl
[5] E. K. Sklyanin, L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi. I”, TMF, 40 (1979), 688–706
[6] L. A. Takhtadzhyan, L. D. Faddeev, “Kvantovyi metod obratnoi zadachi i $XYZ$ model Geizenberga”, UMN, 34 (1979), 13–63
[7] L. D. Faddeev, in: Les Houches Lectures Quantum Symmetries, eds. A. Connes et al., North Holland, 1998, 149 | Zbl
[8] R. I. Nepomechie, C. Wang, Twisting singular solutions of Bethe's equations, arXiv: 1409.7382 | MR
[9] V. Tarasov, A. Varchenko Bases of Bethe vectors and difference equations with regular singular points, arXiv: q-alg/9504011 | MR
[10] T. Holstein, H. Primakoff, “Field dependence of the intrinsic domain magnetization of a ferromagnet”, Phys. Rev., 58:12 (1940), 1098–1113 | DOI | Zbl
[11] R. Bakster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, Moskva, 1985 | MR
[12] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86 (1982), 391–418 | DOI | MR | Zbl
[13] A. G. Izergin, “Statisticheskaya summa shestivershinnoi modeli v konechnom ob'eme”, DAN SSSR, 297 (1987), 331–333 | MR | Zbl
[14] D. Bressoud, Proofs and confirmations: The story of the alternating sign matrix conjecture, Cambridge University Press, Cambridge, England, 1999 | MR | Zbl
[15] W. H. Mills, D. P. Robbins, H. Rumsey, “Proof of the Macdonald conjecture”, Invent. Math., 66 (1982), 73–87 | DOI | MR | Zbl
[16] D. Zeilberger, “Proof of the alternating sign matrix conjecture”, Elec. J. Comb., 3:2 (1996), R13 ; arXiv: math/9407211 | MR | Zbl
[17] G. Kuperberg, “Another proof of the alternating sign matrix conjecture”, Internat. Math. Res. Notices, 1996:3 (1996), 139–150 ; arXiv: math/9712207 | DOI | MR | Zbl
[18] J. M. Maillet, V. Terras, “On the quantum inverse scattering problem”, Nucl. Phys., B575 (2000), 627–644 ; arXiv: hep-th/9911030 | DOI | MR | Zbl
[19] A. G. Izergin, V. E. Korepin, “The quantum inverse scattering method approach to correlation functions”, Comm. Math. Phys., 94 (1981), 67–92 | DOI | MR
[20] N. A. Slavnov, “Algebraicheskii anzats Bete i kvantovye integriruemye sistemy”, UMN, 62:4 (2007), 91–132 | DOI | MR | Zbl
[21] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Master equation for spin-spin correlation functions of the XXZ chain”, Nucl. Phys. B, 712:3 (2005), 600–622 ; arXiv: hep-th/0406190 | DOI | MR | Zbl
[22] N. Kitanine, J. M. Maillet, N. A. Slavnov, V. Terras, “Dynamical correlation functions of the $XXZ$ spin-$1/2$ chain”, Nucl. Phys. B, 729:3 (2005), 558–580 ; arXiv: hep-th/0407108 | DOI | MR | Zbl
[23] F. Göhmann, A. Klümper, A. Seel, “Integral representations for correlation functions of the XXZ chain at finite temperature”, J. Phys. A, 37 (2004), 7625–7652 ; arXiv: hep-th/0405089 | DOI | MR | MR
[24] A. Seel, T. Bhattacharyya, F. Göhmann, A. Klümper, “A note on the spin-1/2 XXZ chain concerning its relation to the Bose gas”, J. Stat. Mech., 2007, P08030 ; arXiv: 0705.3569 | MR
[25] A. Klümper, “Thermodynamics of the anisotropic spin-1/2 Heisenberg chain and related quantum chains”, Zeitschrift für Physik B Condensed Matter, 91:4 (1993), 507–519 ; arXiv: cond-mat/9306019 | DOI
[26] P. Jordan, E. Wigner, “Über das Paulische Äquivalenzverbot”, Zeitschrift für Physik, 47:9 (1928), 631–651 | DOI | Zbl
[27] D. B. Creamer, H. B. Thacker, D. Wilkinson, “Gel'fand-Levitan method for operator fields”, Phys. Rev. D, 21 (1980), 1523–1528 | DOI | MR
[28] H. E. Boos, F. Göhmann, A. Klümper, J. Suzuki, “Factorization of multiple integrals representing the density matrix of a finite segment of the Heisenberg spin chain”, J. Stat. Mech., 0604 (2006), P04001; arXiv: hep-th/0603064