Nonholonomic mechanics of Dirac and differential geometry
Lekcionnye kursy NOC, Nonholonomic mechanics of Dirac and differential geometry, Tome 22 (2014) no. 22, pp. 3-55 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{LKN_2014_22_22_a0,
     author = {V. P. Pavlov},
     title = {Nonholonomic mechanics of {Dirac} and differential geometry},
     journal = {Lekcionnye kursy NOC},
     pages = {3--55},
     year = {2014},
     volume = {22},
     number = {22},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/LKN_2014_22_22_a0/}
}
TY  - JOUR
AU  - V. P. Pavlov
TI  - Nonholonomic mechanics of Dirac and differential geometry
JO  - Lekcionnye kursy NOC
PY  - 2014
SP  - 3
EP  - 55
VL  - 22
IS  - 22
UR  - http://geodesic.mathdoc.fr/item/LKN_2014_22_22_a0/
LA  - ru
ID  - LKN_2014_22_22_a0
ER  - 
%0 Journal Article
%A V. P. Pavlov
%T Nonholonomic mechanics of Dirac and differential geometry
%J Lekcionnye kursy NOC
%D 2014
%P 3-55
%V 22
%N 22
%U http://geodesic.mathdoc.fr/item/LKN_2014_22_22_a0/
%G ru
%F LKN_2014_22_22_a0
V. P. Pavlov. Nonholonomic mechanics of Dirac and differential geometry. Lekcionnye kursy NOC, Nonholonomic mechanics of Dirac and differential geometry, Tome 22 (2014) no. 22, pp. 3-55. http://geodesic.mathdoc.fr/item/LKN_2014_22_22_a0/

[1] P. A. M. Dirac, “Generalized Hamiltonian dinamics”, Proc. Roy. Soc. London. Ser. A, 246 (1958), 326–332 | DOI | MR | Zbl

[2] L. D. Faddeev, “Integral Feinmana dlya singulyarnykh lagranzhianov”, TMF, 1:1 (1969), 3–18 | MR | Zbl

[3] A. M. Vershik, L. D. Faddeev, “Differentsialnaya geometriya i lagranzheva mekhanika so svyazyami”, Dokl. AN SSSR, 202:3 (1972), 555–557 ; А. М. Вершик, Л. Д. Фаддеев, “Лагранжева механика в инвариантной форме”, Проблемы теоретической физики, Т. 2, Изд-во Ленинградского ун-та, Л., 1975, 129–141 ; A. M. Vershik, “Mathematics of Nonholonomicty”, Appendix 3: V. Sergeev, The Thermodynamic Approach to Market, arXiv: 0803.3432v1 | Zbl | MR | Zbl

[4] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1974 | MR | Zbl

[5] K. Godbiion, Differentsialnaya geometriya i analiticheskaya mekhanika, Mir, M., 1973 | MR | Zbl

[6] G. Marmo, N. Mukunda, J. Samuel, “Dynamics and symmetry for constrainted systems: a geometrical analysis”, Riv. Nuovo Cimento (3), 6:2 (1983), 1–62 | DOI | MR

[7] B. A. Dubrovin, M. Giordano, G. Marmo, A. Simoni, “Poisson brackets on presymplectic manifolds”, Internat. J. Modern Phys. A, 8:21 (1993), 3747–3771 | DOI | MR | Zbl

[8] V. P. Pavlov, A. O. Starinets, “Geometriya fazovogo prostranstva sistem so svyazyami”, TMF, 105:3 (1995), 429–437 | MR | Zbl

[9] A. A. Kirillov, “Lokalnye algebry Li”, UMN, 31:4 (1976), 57–76 | MR | Zbl

[10] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie sistem so svyazyami, Nauka, M., 1986 | MR | Zbl

[11] V. P. Pavlov, “Reduktsiya na poverkhnost svyazei vtorogo roda”, TMF, 132:3 (2002), 399–407 | DOI | MR | Zbl

[12] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika. T. 1. Mekhanika, Nauka, M., 1988 | MR

[13] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, T. 1, Nauka, M., 1981 | MR | Zbl