Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation
Lekcionnye kursy NOC, Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation, Tome 18 (2011) no. 18, pp. 3-118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{LKN_2011_18_18_a0,
     author = {N. A. Slavnov},
     title = {Introduction to the theory of quantum integrable systems. {Quantum} nonlinear {Schr\"odinger} equation},
     journal = {Lekcionnye kursy NOC},
     pages = {3--118},
     year = {2011},
     volume = {18},
     number = {18},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/LKN_2011_18_18_a0/}
}
TY  - JOUR
AU  - N. A. Slavnov
TI  - Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation
JO  - Lekcionnye kursy NOC
PY  - 2011
SP  - 3
EP  - 118
VL  - 18
IS  - 18
UR  - http://geodesic.mathdoc.fr/item/LKN_2011_18_18_a0/
LA  - ru
ID  - LKN_2011_18_18_a0
ER  - 
%0 Journal Article
%A N. A. Slavnov
%T Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation
%J Lekcionnye kursy NOC
%D 2011
%P 3-118
%V 18
%N 18
%U http://geodesic.mathdoc.fr/item/LKN_2011_18_18_a0/
%G ru
%F LKN_2011_18_18_a0
N. A. Slavnov. Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation. Lekcionnye kursy NOC, Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation, Tome 18 (2011) no. 18, pp. 3-118. http://geodesic.mathdoc.fr/item/LKN_2011_18_18_a0/

[1] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl

[2] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR | Zbl

[3] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR | Zbl

[4] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl

[5] V. E. Korepin, N. M. Bogolyubov, A.Ġ. Izergin, Kvantovyi metod obratnoi zadachi i korrelyatsionnye funktsii, Nauka, M., 1991

[6] N. A. Slavnov, “Ob odnom tozhdestve dlya dualnykh polei”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 14, Zap. nauchn. sem. POMI, 245, POMI, SPb., 1997, 270–281 | MR | Zbl

[7] F. A. Berezin, G. P. Pokhil, V. M. Finkelberg, “Uravnenie Shrëdingera dlya sistemy odnomernykh chastits s tochechnym vzaimodeistviem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 1, 21–28 | MR

[8] V. E. Korepin, N. M. Bogolyubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[9] V. I. Smirnov, Kurs vysshei matematiki, T. 4, Ucheb. posobie, Nauka, M., 1958 | MR

[10] E. H. Lieb, “Exact analysis of an interaction Bose gas. I. The general solution and the ground state”, Phys. Rev. (2), 130 (1963), 1605–1616 | DOI | MR | Zbl

[11] E. H. Lieb, “Exact analysis of an interacting Bose gas. II. The excitation spectrum”, Phys. Rev. (2), 130 (1963), 1616–1624 | DOI | MR | Zbl

[12] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl

[13] C. N. Yang, C. P. Yang, “Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction”, J. Math. Phys., 10 (1969), 1115–1122 | DOI | MR | Zbl

[14] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1963 | MR | Zbl

[15] V. E. Korepin, N. A. Slavnov, “The time dependent correlation function of an impenetrable Bose gas as a Fredholm minor. I”, Comm. Math. Phys., 129:1 (1990), 103–113 | DOI | MR | Zbl

[16] A. R. Its, A.Ġ. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation functions”, Internat. J. Modern Phys. B, 4:5 (1990), 1003–1037 | DOI | MR | Zbl

[17] N. A. Slavnov, “Fredgolmovy determinanty i $\tau$-funktsii”, TMF, 109:3 (1996), 357–371 | MR | Zbl

[18] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl

[19] V. V. Cheianov, M. B. Zvonarev, “Zero temperature correlation functions for the impenetrable fermion gas”, J. Phys. A: Math. Gen., 37:6 (2004), 2261–2297 | DOI | MR | Zbl