Branching Bellman-Harris processes
Lekcionnye kursy NOC, Branching Bellman-Harris processes, Tome 12 (2009) no. 12, pp. 3-111 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{LKN_2009_12_12_a0,
     author = {V. A. Vatutin},
     title = {Branching {Bellman-Harris} processes},
     journal = {Lekcionnye kursy NOC},
     pages = {3--111},
     year = {2009},
     volume = {12},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/LKN_2009_12_12_a0/}
}
TY  - JOUR
AU  - V. A. Vatutin
TI  - Branching Bellman-Harris processes
JO  - Lekcionnye kursy NOC
PY  - 2009
SP  - 3
EP  - 111
VL  - 12
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/LKN_2009_12_12_a0/
LA  - ru
ID  - LKN_2009_12_12_a0
ER  - 
%0 Journal Article
%A V. A. Vatutin
%T Branching Bellman-Harris processes
%J Lekcionnye kursy NOC
%D 2009
%P 3-111
%V 12
%N 12
%U http://geodesic.mathdoc.fr/item/LKN_2009_12_12_a0/
%G ru
%F LKN_2009_12_12_a0
V. A. Vatutin. Branching Bellman-Harris processes. Lekcionnye kursy NOC, Branching Bellman-Harris processes, Tome 12 (2009) no. 12, pp. 3-111. http://geodesic.mathdoc.fr/item/LKN_2009_12_12_a0/

[1] Vatutin V. A., “Uslovie regulyarnosti vetvyaschegosya protsessa Bellmana–Kharrisa”, Dokl. AN SSSR, 230:1 (1976), 15–18 | MR | Zbl

[2] Vatutin V. A., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa s beskonechnoi dispersiei”, Teoriya veroyatn. i ee primen., 21:4 (1976), 861–863 | MR | Zbl

[3] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v kriticheskikh vetvyaschikhsya protsessakh Bellmana–Kharrisa”, Teoriya veroyatn. i ee primen., 22:1 (1977), 150–155 | MR | Zbl

[4] Vatutin V. A., “Predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa s neskolkimi tipami chastits i beskonechnymi vtorymi momentami”, Teoriya veroyatn. i ee primen., 23:4 (1978), 807–818 | MR | Zbl

[5] Vatutin V. A., “O rasstoyanii do blizhaishego obschego predka v vetvyaschikhsya protsessakh Bellmana–Kharrisa”, Matem. zametki, 25:5 (1979), 733–741 | MR | Zbl

[6] Vatutin V. A., “Novaya predelnaya teorema dlya kriticheskogo vetvyaschegosya protsessa Bellmana–Kharrisa”, Matem. sb., 109:3 (1979), 440–452 | MR | Zbl

[7] Vatutin V. A., “Diskretnye predelnye raspredeleniya chisla chastits v vetvyaschikhsya protsessakh Bellmana–Kharrisa s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 24:3 (1979), 503–514 | MR | Zbl

[8] Vatutin V. A., “Ob odnom klasse kriticheskikh vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 25:4 (1980), 771–781 | MR | Zbl

[9] Vatutin V. A., “Dostatochnoe uslovie regulyarnosti vetvyaschikhsya protsessov Bellmana–Kharrisa”, Teoriya veroyatn. i ee primen., 31:1 (1986), 59–66 | MR | Zbl

[10] Vatutin V. A., Vetvyaschiesya protsessy i ikh primeneniya, Lektsionnye kursy NOTs, MIAN, M., 2008 | DOI

[11] Vatutin V. A., Zubkov A. M., “Vetvyaschiesya protsessy. I”, Itogi nauki i tekhn. Ser. Teor. veroyatn. Mat. stat. Teor. kibernet., 23, VINITI, M., 1985, 3–67 | MR | Zbl

[12] Vatutin V. A., Televinova T. M., Chistyakov V. P., Veroyatnostnye metody v fizicheskikh issledovaniyakh, Nauka, M., 1984

[13] Grishechkin S. A., “O regulyarnosti vetvyaschikhsya protsessov s neskolkimi tipami chastits”, Teoriya veroyatn. i ee primen., 31:2 (1986), 278–289 | MR | Zbl

[14] Grishechkin S. A., “Vetvyaschiesya protsessya Krampa–Moda–Yagersa kak metod issledovaniya sistemy $M|G|1$ s razdeleniem protsessora”, Teoriya veroyatn. i ee primen., 36:1 (1991), 16–33 | MR

[15] Nagaev S. V., “Perekhodnye yavleniya dlya zavisyaschikh ot vozrasta vetvyaschikhsya protsessov s diskretnym vremenem. II”, Sib. matem. zhurn., 15:3 (1974), 570–579 | MR | Zbl

[16] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR

[17] Sagitov S. M., “Tri predelnye teoremy dlya redutsirovannykh kriticheskikh vetvyaschikhsya protsessov”, UMN, 50:5 (1995), 183–202 | MR | Zbl

[18] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[19] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985 | MR | Zbl

[20] Feller V., Vvedenie v teoriyu veroyatnostei i ee primeneniya, t. 2, Mir, M., 1984

[21] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966

[22] Athreya K. B., Ney P., Branching Processes, Springer-Verlag, Berlin, 1972 | MR | Zbl

[23] Crump K. S., Mode C. J., “A general age-dependent branching process. I”, J. Math. Anal. Appl., 24 (1968), 494–508 | DOI | Zbl

[24] Crump K. S., Mode C. J., “A general age-dependent branching process. II”, J. Math. Anal. Appl., 25 (1969), 8–17 | DOI | MR | Zbl

[25] Devroye L., “Branching processes and their applications in the analysis of tree structures and tree algorithms”, Probabilistic methods for algorithmic discrete mathematics, eds. Habib M. et al., Springer, Berlin–Heidelberg–New York, 1998 | MR

[26] Haccou P., Jagers P., Vatutin V., Branching Processes in Biology: Variation, Growth and Extinction, Cambridge Univ. Press, Cambridge, 2005 | Zbl

[27] Jagers P., Branching Processes with Biological Applications, John Wiley and Sons, London, 1975 | MR | Zbl

[28] Vatutin V. A., Zubkov A. M., “Branching Processes II”, J. Sov. Math., 67 (1993), 3407–3485 | DOI | MR | Zbl