Algebraic and geometric foundation of mathematical physics
Lekcionnye kursy NOC, Algebraic and geometric foundation of mathematical physics, Tome 9 (2008) no. 9, pp. 3-209
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{LKN_2008_9_9_a0,
     author = {V. V. Zharinov},
     title = {Algebraic and geometric foundation of mathematical physics},
     journal = {Lekcionnye kursy NOC},
     pages = {3--209},
     year = {2008},
     volume = {9},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/LKN_2008_9_9_a0/}
}
TY  - JOUR
AU  - V. V. Zharinov
TI  - Algebraic and geometric foundation of mathematical physics
JO  - Lekcionnye kursy NOC
PY  - 2008
SP  - 3
EP  - 209
VL  - 9
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/LKN_2008_9_9_a0/
LA  - ru
ID  - LKN_2008_9_9_a0
ER  - 
%0 Journal Article
%A V. V. Zharinov
%T Algebraic and geometric foundation of mathematical physics
%J Lekcionnye kursy NOC
%D 2008
%P 3-209
%V 9
%N 9
%U http://geodesic.mathdoc.fr/item/LKN_2008_9_9_a0/
%G ru
%F LKN_2008_9_9_a0
V. V. Zharinov. Algebraic and geometric foundation of mathematical physics. Lekcionnye kursy NOC, Algebraic and geometric foundation of mathematical physics, Tome 9 (2008) no. 9, pp. 3-209. http://geodesic.mathdoc.fr/item/LKN_2008_9_9_a0/

[1] C. J. Isham, Modern differential geometry for physicists, World Sci. Lecture Notes Phys., 61, World Scientific, River Edge, NJ, 1999 | MR | Zbl

[2] J. Madore, An introduction to noncommutative differential geometry and its physical applications, London Math. Soc. Lecture Note Ser., 206, Cambridge University Press, Cambridge, 1995 | MR | Zbl

[3] J. L. Taylor, “Homology and cohomology for topological algebras”, Advances in Mathematics, 9:2 (1972), 137–182 | DOI | MR | Zbl

[4] L. R. Vermani, An elementary approach to homological algebra, Chapman Hall/CRC, Boca Raton, FL, 2003 | MR | Zbl

[5] V. V. Zharinov, Lecture notes on geometrical aspects of partial differential equations, Ser. Soviet East European Math., 9, World Scientific, River Edge, NJ, 1992 | MR | Zbl

[6] N. Burbaki, Differentsiruemye i analiticheskie mnogoobraziya. Svodka rezultatov, Mir, Moskva, 1975 | MR

[7] A. M. Vinogradov, I. S. Krasilschik (red.), Simmetrii i zakony sokhraneniya uravnenii matematicheskoi fiziki, Faktorial, Moskva, 1997

[8] R. Godeman, Algebraicheskaya topologiya i teoriya puchkov, IL, Moskva, 1961 | MR

[9] A. Grotendik, O nekotorykh voprosakh gomologicheskoi algebry, IL, Moskva, 1961

[10] A. Dold, Lektsii po algebraicheskoi topologii, Mir, Moskva, 1976 | MR

[11] Yu. N. Drozhzhinov, B. I. Zavyalov, Vvedenie v teoriyu obobschennykh funktsii, Lektsionnye kursy NOTs, 5, MIAN, Moskva, 2006 | DOI

[12] V. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, tom I, Editorial URSS, Moskva, 1998

[13] V. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, tom II, Editorial URSS, Moskva, 1998

[14] V. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, Moskva, 1984 | MR

[15] R. Zulanke, P. Vintgen, Differentsialnaya geometriya i rassloeniya, Mir, Moskva, 1975 | MR

[16] A. Kartan, S. Eilenberg, Gomologicheskaya algebra, IL, Moskva, 1960 | MR

[17] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, Moskva, 1978 | MR | Zbl

[18] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, tom I, Nauka, Moskva, 1981 | MR

[19] Sh. Kobayasi, K. Nomidzu, Osnovy differentsialnoi geometrii, tom II, Nauka, Moskva, 1981 | MR

[20] S. Leng, Algebra, Mir, Moskva, 1968

[21] S. Maklein, Gomologiya, Mir, Moskva, 1966

[22] S. Maklein, Kategorii dlya rabotayuschego matematika, Fizmatlit, Moskva, 2004

[23] Manin Yu. I., Lektsii po algebraicheskoi geometrii. Chast I. Affinnye skhemy, MGU, Moskva, 1970

[24] Naimark M. A., Normirovannye koltsa, Nauka, Moskva, 1968 | MR | Zbl

[25] A. Pich, Yadernye lokalno vypuklye prostranstva, Mir, Moskva, 1967 | MR

[26] A. Robertson, V. Robertson, Topologicheskie vektornye prostranstva, Mir, Moskva, 1967 | MR | Zbl

[27] S. Sternberg, Lektsii po differentsialnoi geometrii, Mir, Moskva, 1970 | MR | Zbl

[28] R. Uells, Differentsialnoe ischislenie na kompleksnykh mnogoobraziyakh, Mir, Moskva, 1976 | MR

[29] M. V. Fedoryuk, Obyknovennye differentsialnye uravneniya, Nauka, Moskva, 1985 | MR

[30] S. Khelgason, Differentsialnaya geometriya, gruppy Li i simmetricheskie prostranstva, Faktorial Press, Moskva, 2005

[31] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry. Obschaya teoriya, predstavleniya, gomologii, Nauka, Moskva, 1989 | MR

[32] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, Moskva, 2004