@article{LKN_2007_6_6_a0,
author = {V. I. Afanasyev},
title = {Random walks and branching processes},
journal = {Lekcionnye kursy NOC},
pages = {3--187},
year = {2007},
volume = {6},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/LKN_2007_6_6_a0/}
}
V. I. Afanasyev. Random walks and branching processes. Lekcionnye kursy NOC, Random walks and branching processes, Tome 6 (2007) no. 6, pp. 3-187. http://geodesic.mathdoc.fr/item/LKN_2007_6_6_a0/
[1] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl
[2] Borovkov A. A., Teoriya veroyatnostei, Editorial URSS, M., 1999 | MR | Zbl
[3] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit; Laboratoriya bazovykh znanii, M., 2003
[4] Ito K., Makkin G., Diffuzionnye protsessy i ikh traektorii, Mir, M., 1968 | MR | Zbl
[5] Petrov V. V., Summy nezavisimykh sluchainykh velichin, Nauka, M., 1972 | MR | Zbl
[6] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR | Zbl
[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, t. 1, 2, Mir, M., 1984 | MR | MR | Zbl
[8] Kharris T., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966
[9] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR | Zbl
[10] Athreya K. B., Ney P. E., Branching Processes, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl
[11] Afanasev V. I., “Predelnye teoremy dlya promezhutochno dokriticheskogo i strogo dokriticheskogo vetvyaschikhsya protsessov v sluchainoi srede”, Diskretnaya matematika, 13:1 (2001), 132–157 | MR | Zbl
[12] Eppel M. S., “Lokalnaya predelnaya teorema dlya momenta pervogo pereskoka”, Sib. matem. zhurn., 20:1 (1979), 181–191 | MR | Zbl
[13] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[14] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Functional limit theorems for strongly subcritical branching processes in random environment”, Stochastic Processes and their Applications, 115:10 (2005), 1658–1676 | DOI | MR | Zbl
[15] Bolthausen E., “On a functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 4:3 (1976), 480–485 | DOI | MR | Zbl
[16] Durrett R. T., “Conditioned limit theorems for some null recurrent Marcov processes”, Ann. Probab., 6:5 (1978), 798–828 | DOI | MR | Zbl
[17] Durrett R. T., Iglehart D. L., Miller D. R., “Weak convergence to Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 117–129 | DOI | MR | Zbl
[18] Feller W., “Diffusion processes in genetics”, Proc. 2nd Berkeley Sympos. Math. Statist. and Prob., 1951, 227–246 | MR | Zbl
[19] Geiger J., Kersting G., Vatutin V. A., “Limit theorems for subcritical branching processes in random environment”, Ann. Inst. Henri Poincare, Probab. Stat., 39:4 (2003), 593–620 | DOI | MR | Zbl
[20] Iglehart D. L., “Functional central limit theorems for random walks conditioned to stay positive”, Ann. Probab., 2:4 (1974), 608–619 | DOI | MR | Zbl
[21] Lamperti J., Ney P., “Conditioned branching processes and their limiting diffusions”, Teoriya veroyatnostei i ee primeneniya, 13:1 (1968), 126–137 | MR | Zbl
[22] Liggett T. M., “An invariance principle for conditioned sums of independent random variables”, J. Math. Mech., 18 (1968), 559–570 | MR | Zbl
[23] Lindvall T., “Convergence of critical Galton–Watson branching processes”, J. Appl. Probab., 9 (1972), 445–450 | DOI | MR | Zbl
[24] Lindvall T., “Almost sure convergence of branching processes in varying and random environments”, Ann. Probab., 2:2 (1974), 344–346 | DOI | MR | Zbl
[25] Stone C. J., “A local limit theorem for nonlattice multidimensional distribution functions”, Ann. Math. Statist., 36 (1965), 546–551 | DOI | MR | Zbl
[26] Tanaka H., “Time reversal of random walks in one dimension”, Tokyo J. Math., 12 (1989), 159–174 | MR | Zbl