Riemannian structures on higher order frame bundles over Riemannian manifolds
Lobachevskii journal of mathematics, Tome 27 (2007), pp. 41-46
Cet article a éte moissonné depuis la source Math-Net.Ru
We describe all $\mathcal Mf_m$-natural operators $A\colon\mathcal Riem\to\mathcal Riem P^r$ transforming Riemannian structures $g$ on $m$-dimensional manifolds $M$ into Riemannian structures $A(g)$ on the $r$-th order frame bundle $P^rM=invJ_0^r(\mathbf R^m, M)$ over $M$.
Keywords:
Riemannian structure, higher order frame bundle, natural operator.
@article{LJM_2007_27_a3,
author = {J. Kurek and W. M. Mikulski},
title = {Riemannian structures on higher order frame bundles over {Riemannian} manifolds},
journal = {Lobachevskii journal of mathematics},
pages = {41--46},
year = {2007},
volume = {27},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2007_27_a3/}
}
J. Kurek; W. M. Mikulski. Riemannian structures on higher order frame bundles over Riemannian manifolds. Lobachevskii journal of mathematics, Tome 27 (2007), pp. 41-46. http://geodesic.mathdoc.fr/item/LJM_2007_27_a3/
[1] Kobayashi S., Nomizu K., Foundations of Differential Geometry, Mir, Moskow, 1981 (in Russian)
[2] Kolář I., Michor P. W., Slovák J., Natural Operations in Differential Geometry, Springer Verlag, 1993 | MR