Uniqueness of solutions to a~class of strongly degenerate parabolic equation
Lobachevskii journal of mathematics, Tome 26 (2007), pp. 79-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, by virtue of Holmgren's approach, we show the uniqueness of the bounded solutions to a class of parabolic equation with two kinds degeneracies at the same time under some necessary conditions on the growth of the convection and sources.
Keywords: Holmgren's approach, strongly degeneracy.
@article{LJM_2007_26_a8,
     author = {Zh. Ling and Zh.-G. Wang},
     title = {Uniqueness of solutions to a~class of strongly degenerate parabolic equation},
     journal = {Lobachevskii journal of mathematics},
     pages = {79--90},
     publisher = {mathdoc},
     volume = {26},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a8/}
}
TY  - JOUR
AU  - Zh. Ling
AU  - Zh.-G. Wang
TI  - Uniqueness of solutions to a~class of strongly degenerate parabolic equation
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 79
EP  - 90
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_26_a8/
LA  - en
ID  - LJM_2007_26_a8
ER  - 
%0 Journal Article
%A Zh. Ling
%A Zh.-G. Wang
%T Uniqueness of solutions to a~class of strongly degenerate parabolic equation
%J Lobachevskii journal of mathematics
%D 2007
%P 79-90
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_26_a8/
%G en
%F LJM_2007_26_a8
Zh. Ling; Zh.-G. Wang. Uniqueness of solutions to a~class of strongly degenerate parabolic equation. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 79-90. http://geodesic.mathdoc.fr/item/LJM_2007_26_a8/

[1] Z. Q. Wu, J. N. Zhao, J. X. Yin and H. L. Li, Nonlinear diffusion equations, World Scientific Publishing Co., Inc., 2001 | MR

[2] B. H. Gilding, “A nonlinear degenerate parabolic equation”, Annali della Scuola Norm. Sup di Pisa, 4:3 (1977), 393–432 | MR | Zbl

[3] J. N. Zhao, “Uniqueness of solutions of the first boundary value problem for quasilinear degenerate parabolic equation”, Northeastern Math. J., 1:1 (1985), 153–165 | MR | Zbl

[4] Z. Q. Wu, “Quasilinear degenerate parabolic equations”, Adv. Math. (China), 16:2 (1987), 121–158 | MR | Zbl

[5] J. N. Zhao, “Continuity of solutions for a class quasilinear degenerate parabolic equations”, Northeastern Math. J., 7:3 (1991), 356–365 | MR

[6] Q. Liu, C. P. Wang, “Uniqueness of the bounded solution to a strongly degenerate parabolic equations”, Nolinear Analysis, 2006 | DOI