Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2007_26_a8, author = {Zh. Ling and Zh.-G. Wang}, title = {Uniqueness of solutions to a~class of strongly degenerate parabolic equation}, journal = {Lobachevskii journal of mathematics}, pages = {79--90}, publisher = {mathdoc}, volume = {26}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a8/} }
Zh. Ling; Zh.-G. Wang. Uniqueness of solutions to a~class of strongly degenerate parabolic equation. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 79-90. http://geodesic.mathdoc.fr/item/LJM_2007_26_a8/
[1] Z. Q. Wu, J. N. Zhao, J. X. Yin and H. L. Li, Nonlinear diffusion equations, World Scientific Publishing Co., Inc., 2001 | MR
[2] B. H. Gilding, “A nonlinear degenerate parabolic equation”, Annali della Scuola Norm. Sup di Pisa, 4:3 (1977), 393–432 | MR | Zbl
[3] J. N. Zhao, “Uniqueness of solutions of the first boundary value problem for quasilinear degenerate parabolic equation”, Northeastern Math. J., 1:1 (1985), 153–165 | MR | Zbl
[4] Z. Q. Wu, “Quasilinear degenerate parabolic equations”, Adv. Math. (China), 16:2 (1987), 121–158 | MR | Zbl
[5] J. N. Zhao, “Continuity of solutions for a class quasilinear degenerate parabolic equations”, Northeastern Math. J., 7:3 (1991), 356–365 | MR
[6] Q. Liu, C. P. Wang, “Uniqueness of the bounded solution to a strongly degenerate parabolic equations”, Nolinear Analysis, 2006 | DOI