A note on generalized Gorenstein dimension
Lobachevskii journal of mathematics, Tome 26 (2007), pp. 69-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that two categories $\mathcal G_\omega$ and $\mathcal X_\omega$, introduced for the faithfully balanced selforthogonal module $\omega$ by Auslander and Reiten in [2] and [3] respectively, coincide with each other. As an application we give a generalization of a main theorem in [6].
@article{LJM_2007_26_a7,
     author = {J. Wei},
     title = {A note on generalized {Gorenstein} dimension},
     journal = {Lobachevskii journal of mathematics},
     pages = {69--77},
     publisher = {mathdoc},
     volume = {26},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a7/}
}
TY  - JOUR
AU  - J. Wei
TI  - A note on generalized Gorenstein dimension
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 69
EP  - 77
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_26_a7/
LA  - en
ID  - LJM_2007_26_a7
ER  - 
%0 Journal Article
%A J. Wei
%T A note on generalized Gorenstein dimension
%J Lobachevskii journal of mathematics
%D 2007
%P 69-77
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_26_a7/
%G en
%F LJM_2007_26_a7
J. Wei. A note on generalized Gorenstein dimension. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 69-77. http://geodesic.mathdoc.fr/item/LJM_2007_26_a7/

[1] Auslander M. and Bridger M., Stable module theory, Mem. A.M.S., 94, 1969 | MR | Zbl

[2] Auslander M. and Reiten I., “Cohen-Macaulay algebras and Gorenstein algebras”, Progress in Math., 95 (1991), 221–245 | MR | Zbl

[3] Auslander M. and Reiten I., “Applications of contravariantly finite subcategories”, Adv. Math., 86 (1991), 111–152 | DOI | MR | Zbl

[4] Enochs E. E., Jenda O. M. G., Relative Homological Algebra, de Gruyter Expositions in Mathematics, 30, Walter de Gruyter Co., Berlin, 2000 | MR | Zbl

[5] Holm H., “Gorenstein homological dimensions”, J. Pure and Appl. Alg., 189:1–3 (2004), 167–193 | DOI | MR | Zbl

[6] Huang Z., “Selforthogonal modules with finite injective dimension”, Science in China, 43 (2000), 1174–1181 | MR | Zbl

[7] Huang Z., “On a generalization of the Auslander-Bridger transpose”, Comm. Alg., 27 (1999), 5791–5812 | DOI | MR | Zbl

[8] Wakamatsu T., “On modules with trivial self-extensions”, J. Alg., 114 (1988), 106–114 | DOI | MR | Zbl

[9] Wakamatsu T., “Stable equivalence of self-injective algebras and a generalization of tilting modules”, J. Alg., 134 (1990), 298–325 | DOI | MR | Zbl