On subclasses of close-to-convex and quasi-convex functions with respect to $2k$-symmetric conjugate points
Lobachevskii journal of mathematics, Tome 26 (2007), pp. 125-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the authors introduce two new subclasses $\mathcal S_{sc}^{(k)}(\lambda,\alpha)$ of close-to-convex functions and $\mathcal C_{sc}^{(k)}(\lambda,\alpha)$ of quasi-convex functions with respect to $2k$-symmetric conjugate points. The integral representations and convolution conditions for these classes are provided. Some coefficient inequalities for functions belonging to these classes and their subclasses with negative coefficients are also provided.
Keywords: close-to-convex functions, quasi-convex functions, $2k$-symmetric conjugate points.
Mots-clés : Hadamard product
@article{LJM_2007_26_a11,
     author = {Zh.-G. Wang and D.-Zh. Chen},
     title = {On subclasses of close-to-convex and quasi-convex functions with respect to $2k$-symmetric conjugate points},
     journal = {Lobachevskii journal of mathematics},
     pages = {125--135},
     publisher = {mathdoc},
     volume = {26},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a11/}
}
TY  - JOUR
AU  - Zh.-G. Wang
AU  - D.-Zh. Chen
TI  - On subclasses of close-to-convex and quasi-convex functions with respect to $2k$-symmetric conjugate points
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 125
EP  - 135
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_26_a11/
LA  - en
ID  - LJM_2007_26_a11
ER  - 
%0 Journal Article
%A Zh.-G. Wang
%A D.-Zh. Chen
%T On subclasses of close-to-convex and quasi-convex functions with respect to $2k$-symmetric conjugate points
%J Lobachevskii journal of mathematics
%D 2007
%P 125-135
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_26_a11/
%G en
%F LJM_2007_26_a11
Zh.-G. Wang; D.-Zh. Chen. On subclasses of close-to-convex and quasi-convex functions with respect to $2k$-symmetric conjugate points. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 125-135. http://geodesic.mathdoc.fr/item/LJM_2007_26_a11/

[1] H. Al-Amiri, D. Coman and P. T. Mocanu, “Some properties of starlike functions with respect to symmetric conjugate points”, Internat. J. Math. Math. Sci., 18 (1995), 469–474 | DOI | MR | Zbl

[2] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983 | MR | Zbl

[3] K. I. Noor, “On quasi-convex functions and related topics”, Internat. J. Math. Math. Sci., 10 (1987), 241–258 | DOI | MR | Zbl

[4] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, “Close-to-convexity, starlikeness, and convexity of certain analytic functions”, Appl. Math. Lett., 15 (2002), 63–69 | DOI | MR | Zbl

[5] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992 | MR

[6] Z.-R. Wu, “The integral operator of starlikeness and the family of Bazilevič functions”, Acta Math. Sinica, 27 (1984), 394–409 | MR | Zbl