$q$-Bounded systems: Common approach to Fisher--Micchelli's and Bernstein--Walsh's type problems
Lobachevskii journal of mathematics, Tome 25 (2007), pp. 197-216

Voir la notice de l'article provenant de la source Math-Net.Ru

We have developed a new common method to investigate geometrically fast approximation problems. Fisher–Micchelli's, Bernstein–Walsh's and Batirov–Varga's well known results are obtained as applications.
Keywords: fast approximation, n-widths, biorthogonal systems.
@article{LJM_2007_25_a5,
     author = {M. S. Martirosyan and S. V. Samarchyan},
     title = {$q${-Bounded} systems: {Common} approach to {Fisher--Micchelli's} and {Bernstein--Walsh's} type problems},
     journal = {Lobachevskii journal of mathematics},
     pages = {197--216},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_25_a5/}
}
TY  - JOUR
AU  - M. S. Martirosyan
AU  - S. V. Samarchyan
TI  - $q$-Bounded systems: Common approach to Fisher--Micchelli's and Bernstein--Walsh's type problems
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 197
EP  - 216
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_25_a5/
LA  - en
ID  - LJM_2007_25_a5
ER  - 
%0 Journal Article
%A M. S. Martirosyan
%A S. V. Samarchyan
%T $q$-Bounded systems: Common approach to Fisher--Micchelli's and Bernstein--Walsh's type problems
%J Lobachevskii journal of mathematics
%D 2007
%P 197-216
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_25_a5/
%G en
%F LJM_2007_25_a5
M. S. Martirosyan; S. V. Samarchyan. $q$-Bounded systems: Common approach to Fisher--Micchelli's and Bernstein--Walsh's type problems. Lobachevskii journal of mathematics, Tome 25 (2007), pp. 197-216. http://geodesic.mathdoc.fr/item/LJM_2007_25_a5/