Quantizations of braided derivations. 2. Graded modules
Lobachevskii journal of mathematics, Tome 25 (2007), pp. 131-160

Voir la notice de l'article provenant de la source Math-Net.Ru

For the monoidal category of graded modules we find braidings and quantizations. We use them to find quantizations of braided symmetric algebras and modules, braided derivations, braided connections, curvatures and differential operators.
@article{LJM_2007_25_a2,
     author = {H. L. Huru},
     title = {Quantizations of braided derivations. 2. {Graded} modules},
     journal = {Lobachevskii journal of mathematics},
     pages = {131--160},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_25_a2/}
}
TY  - JOUR
AU  - H. L. Huru
TI  - Quantizations of braided derivations. 2. Graded modules
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 131
EP  - 160
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_25_a2/
LA  - en
ID  - LJM_2007_25_a2
ER  - 
%0 Journal Article
%A H. L. Huru
%T Quantizations of braided derivations. 2. Graded modules
%J Lobachevskii journal of mathematics
%D 2007
%P 131-160
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_25_a2/
%G en
%F LJM_2007_25_a2
H. L. Huru. Quantizations of braided derivations. 2. Graded modules. Lobachevskii journal of mathematics, Tome 25 (2007), pp. 131-160. http://geodesic.mathdoc.fr/item/LJM_2007_25_a2/