Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2006_24_a4, author = {Ch. Liu}, title = {Self-similar solutions for a nonlinear degenerate parabolic equation}, journal = {Lobachevskii journal of mathematics}, pages = {63--72}, publisher = {mathdoc}, volume = {24}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a4/} }
Ch. Liu. Self-similar solutions for a nonlinear degenerate parabolic equation. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 63-72. http://geodesic.mathdoc.fr/item/LJM_2006_24_a4/
[1] Wang Junyu, “A boundary value problem for a nonlinear ordinary differential equation involving a small parameter”, Chin. Ann. Math., 12B (1991), 106–121 | MR
[2] Peletier L. A. and Wang Junyu, “A very singular solution of a quasilinear degenerate diffusion equation with absorption”, Trans. Amer. Math. Soc., 307 (1988), 813–826 | DOI | MR | Zbl
[3] Zhao Junning and Xu Zhonghai, “Cauchy problem and initial traces for a doubly nonlinear degenerate parabolic equation”, Sci. China Ser. A, 39 (1996), 673–684 | MR | Zbl
[4] Zhao Junning and Yuan Hongjun, “The Cauchy problem of some nonlinear doubly degenerate parabolic equations”, Chinese J. Contemp. Math., 16 (1995), 173–192 | MR
[5] O'Regan D., “Some general existence principles and results for $(\varphi(y'))'=q(t)f(t,y,y')$, $01$”, SIAM J. Math. Anal., 24 (1993), 648–668 | DOI | MR
[6] Zhao Junning and Han Pigong, “BV solutions of Dirichlet problem for a class of doubly nonlinear degenerate parabolic equations”, J. Partial Diff. Equat., 17 (2004), 241–254 | MR | Zbl
[7] Xu Zhonghai, “The asymptotic behavior of solutions of non-Newtonian polytropic filtration equations with strongly nonlinear sources”, J. Math. Study, 32 (1999), 179–183 | MR | Zbl