Self-similar solutions for a nonlinear degenerate parabolic equation
Lobachevskii journal of mathematics, Tome 24 (2006), pp. 63-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the author investigates the initial boundary value problem for a nonlinear degenerate parabolic equation, which comes from a compressible fluid flowing in a homogeneous isotropic rigid porous medium. We establish the existence of nonnegative self-similar solutions.
Keywords: degenerate parabolic equation, self-similar solutions
Mots-clés : existence.
@article{LJM_2006_24_a4,
     author = {Ch. Liu},
     title = {Self-similar solutions for a nonlinear degenerate parabolic equation},
     journal = {Lobachevskii journal of mathematics},
     pages = {63--72},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a4/}
}
TY  - JOUR
AU  - Ch. Liu
TI  - Self-similar solutions for a nonlinear degenerate parabolic equation
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 63
EP  - 72
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_24_a4/
LA  - en
ID  - LJM_2006_24_a4
ER  - 
%0 Journal Article
%A Ch. Liu
%T Self-similar solutions for a nonlinear degenerate parabolic equation
%J Lobachevskii journal of mathematics
%D 2006
%P 63-72
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_24_a4/
%G en
%F LJM_2006_24_a4
Ch. Liu. Self-similar solutions for a nonlinear degenerate parabolic equation. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 63-72. http://geodesic.mathdoc.fr/item/LJM_2006_24_a4/

[1] Wang Junyu, “A boundary value problem for a nonlinear ordinary differential equation involving a small parameter”, Chin. Ann. Math., 12B (1991), 106–121 | MR

[2] Peletier L. A. and Wang Junyu, “A very singular solution of a quasilinear degenerate diffusion equation with absorption”, Trans. Amer. Math. Soc., 307 (1988), 813–826 | DOI | MR | Zbl

[3] Zhao Junning and Xu Zhonghai, “Cauchy problem and initial traces for a doubly nonlinear degenerate parabolic equation”, Sci. China Ser. A, 39 (1996), 673–684 | MR | Zbl

[4] Zhao Junning and Yuan Hongjun, “The Cauchy problem of some nonlinear doubly degenerate parabolic equations”, Chinese J. Contemp. Math., 16 (1995), 173–192 | MR

[5] O'Regan D., “Some general existence principles and results for $(\varphi(y'))'=q(t)f(t,y,y')$, $01$”, SIAM J. Math. Anal., 24 (1993), 648–668 | DOI | MR

[6] Zhao Junning and Han Pigong, “BV solutions of Dirichlet problem for a class of doubly nonlinear degenerate parabolic equations”, J. Partial Diff. Equat., 17 (2004), 241–254 | MR | Zbl

[7] Xu Zhonghai, “The asymptotic behavior of solutions of non-Newtonian polytropic filtration equations with strongly nonlinear sources”, J. Math. Study, 32 (1999), 179–183 | MR | Zbl