Quantizations of braided derivations. 1. Monoidal categories
Lobachevskii journal of mathematics, Tome 24 (2006), pp. 13-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

For monoidal categories we describe braidings and quantizations. We use them to find quantizations of braided symmetric algebras and modules, braided derivations, braided connections, curvatures and differential operators.
@article{LJM_2006_24_a1,
     author = {H. L. Huru},
     title = {Quantizations of braided derivations. 1. {Monoidal} categories},
     journal = {Lobachevskii journal of mathematics},
     pages = {13--42},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/}
}
TY  - JOUR
AU  - H. L. Huru
TI  - Quantizations of braided derivations. 1. Monoidal categories
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 13
EP  - 42
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/
LA  - en
ID  - LJM_2006_24_a1
ER  - 
%0 Journal Article
%A H. L. Huru
%T Quantizations of braided derivations. 1. Monoidal categories
%J Lobachevskii journal of mathematics
%D 2006
%P 13-42
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/
%G en
%F LJM_2006_24_a1
H. L. Huru. Quantizations of braided derivations. 1. Monoidal categories. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 13-42. http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/

[1] Henri Cartan, Samuel Eilenberg, Homological algebra, Princeton University Press, 1956 | MR | Zbl

[2] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994 | MR | Zbl

[3] S. Eilenberg, S. Mac Lane, “Cohomology Theory in Abstract Groups 1”, Annals of Mathematics, 48:1 (1947) | DOI

[4] D. Gurevich, “The Yang Baxter equation and generalizations of formal Lie theory”, Soviet Math. Dokl., 33 (1986), 758–762 | MR | Zbl

[5] D. Gurevich, “Algebraic aspects of quantum Yang Baxter equation”, Algebra i Analiz, 2:4 (1990), 119–148 | MR | Zbl

[6] D. Gurevich, A. Radul, V. Rubtsov, Non-commutative differential geometry and Yang–Baxter equation, Intitute des Hautes Etudies Scientifiques, 88, 1991

[7] H. L. Huru, “Associativity constraints, braidings and quantizations of modules with grading and action”, Lobachevskii Journal of Mathematics, 23 (2006), 5–27 | MR | Zbl

[8] H. L. Huru, “Quantization of braided algebras. 2. Graded Modules”, Lobachevskii Journal of Mathematics, 25 (2007), 131–160 | MR | Zbl

[9] H. L. Huru, “Quantization of braided algebras. 3. Modules with action by a group”, Lobachevskii Journal of Mathematics, 25 (2007), 161–185 | MR | Zbl

[10] H. L. Huru, Braided symmetric and exterior algebras and quantizations of braided Lie algebras

[11] H. L. Huru, V. V. Lychagin, Quantization and classical non-commutative and non-associative algebras, Preprint, Institut Mittag-Leffler, 2005 | MR | Zbl

[12] P. K. Jakobsen, V. Lychagin, The Categorical Theory of Relations and Quantizations, 2001

[13] Cathrine V. Jensen, Linear ordinary differential equations and $D$-modules, solving and reduction methods, Dr.Scient. thesis, The University of Tromsø, Nov. 2004

[14] V. V. Lychagin, Quantizations of Braided Differential Operators, Erwin Schrödinger International Institute of Mathematical Physics, Wien, and Sophus Lie Center, Moscow, 1991

[15] V. V. Lychagin, Differential operators and quantizations, Preprint series in Pure Mathematics, Matematisk institutt, Universitetet i Oslo, No. 44, 1993

[16] V. V. Lychagin, “Calculus and Quantizations Over Hopf Algebras”, Acta Applicandae Mathematicae, 1998, 1–50 | MR

[17] V. V. Lychagin, “Quantizations of Differential Equations”, Pergamon Nonlinear Analysis, 47 (2001), 2621–2632 | DOI | MR | Zbl

[18] Saunders Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | MR | Zbl