Quantizations of braided derivations. 1. Monoidal categories
Lobachevskii journal of mathematics, Tome 24 (2006), pp. 13-42

Voir la notice de l'article provenant de la source Math-Net.Ru

For monoidal categories we describe braidings and quantizations. We use them to find quantizations of braided symmetric algebras and modules, braided derivations, braided connections, curvatures and differential operators.
@article{LJM_2006_24_a1,
     author = {H. L. Huru},
     title = {Quantizations of braided derivations. 1. {Monoidal} categories},
     journal = {Lobachevskii journal of mathematics},
     pages = {13--42},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/}
}
TY  - JOUR
AU  - H. L. Huru
TI  - Quantizations of braided derivations. 1. Monoidal categories
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 13
EP  - 42
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/
LA  - en
ID  - LJM_2006_24_a1
ER  - 
%0 Journal Article
%A H. L. Huru
%T Quantizations of braided derivations. 1. Monoidal categories
%J Lobachevskii journal of mathematics
%D 2006
%P 13-42
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/
%G en
%F LJM_2006_24_a1
H. L. Huru. Quantizations of braided derivations. 1. Monoidal categories. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 13-42. http://geodesic.mathdoc.fr/item/LJM_2006_24_a1/