Almost product structures and Monge-Ampère equations
Lobachevskii journal of mathematics, Tome 23 (2006), pp. 151-181
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Tensor invariants of an almost product structure are constructed. We apply them to solving the problem of contact equivalence and the problem of contact linearization for Monge-Ampère equations.
@article{LJM_2006_23_a5,
     author = {A. G. Kushner},
     title = {Almost product structures and {Monge-Amp\`ere} equations},
     journal = {Lobachevskii journal of mathematics},
     pages = {151--181},
     year = {2006},
     volume = {23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_23_a5/}
}
TY  - JOUR
AU  - A. G. Kushner
TI  - Almost product structures and Monge-Ampère equations
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 151
EP  - 181
VL  - 23
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_23_a5/
LA  - en
ID  - LJM_2006_23_a5
ER  - 
%0 Journal Article
%A A. G. Kushner
%T Almost product structures and Monge-Ampère equations
%J Lobachevskii journal of mathematics
%D 2006
%P 151-181
%V 23
%U http://geodesic.mathdoc.fr/item/LJM_2006_23_a5/
%G en
%F LJM_2006_23_a5
A. G. Kushner. Almost product structures and Monge-Ampère equations. Lobachevskii journal of mathematics, Tome 23 (2006), pp. 151-181. http://geodesic.mathdoc.fr/item/LJM_2006_23_a5/

[1] Hunter J. K., Saxton R., “Dynamics of Director Fields”, SIAM J. Appl. Math., 51:6 (1991), 1498–1521 | DOI | MR | Zbl

[2] Kiritchenco V., Differential-geometrical Structures on Manifolds, Moscow State Pedagogical University, Moscow, 2003, 496 pp.

[3] Kruglikov B. S., “On Some Classification Problems in Four-Dimensional Geometry: Distributions, Almost Complex Structures, and the Generalized Monge-Ampère Equations”, Mat. Sb., 189:11 (1998), 61–74 | MR | Zbl

[4] Kruglikov B. S., “Symplectic and Contact Lie Algebras with Application to the Monge-Ampère Equations”, Tr. Mat. Inst. Steklova, 221, 1998, 232–246 | MR | Zbl

[5] Kruglikov B. S., “Classification of Monge-Ampère Equations With Two Variables”, CAUSTICS '98 (Warsaw), Polish Acad. Sci., Warsaw, 1999, 179–194 | MR | Zbl

[6] Kushner A., “Classification of Mixed Type Monge-Ampère Equations”, Geometry in Partial Differential Equations, World Sci. Publ., River Edge, NJ, 1993, 173–188 | MR

[7] Kushner A., “Symplectic Geometry of Mixed Type Equations”, Amer. Math. Soc. Transl. Ser. 2, 1995, 131–142 | MR | Zbl

[8] Kushner A., “Monge-Ampère Equations and e-Structures”, Dokl. Akad. Nauk, 361:5 (1998), 595–596 | MR | Zbl

[9] Kushner A., “Contact Linearization of Nondegenerate Monge-Ampère Equations”, Dvigenia v obobshennyh prostranstvah, PGPU, Penza, 2005, 56–65 (in Russian)

[10] Kushner A., Lychagin V., Rubtsov V., Contact Geometry and Nonlinear Differential Equations, Cambridge University Press, 2006 (to appear)

[11] Lychagin V. V., “Contact Geometry and Second-Order Nonlinear Differential Equations”, Uspekhi Mat. Nauk, 34:1 (1979), 137–165 | MR | Zbl

[12] Lychagin V., Lectures on Geometry of Differential Equations, 1, 2, La Sapienza, Rome, 1993

[13] Lychagin V. V. and Rubtsov V. N., “Non-holonomic Filtration: Algebraic and Geometric Aspects of Non-Integrability”, Geometry in partial differential equations, World Sci. Publishing, River Edge, NJ, 1994, 189–214 | MR | Zbl

[14] Morozov O. I., Contact Equivalence of the Generalized Hunter-Saxton Equation and the Euler-Poisson Equation, arXiv:math-ph/0406016

[15] Tunitskii D. V., “On the Contact Linearization of Monge-Ampère Equations”, Izv. Ross. Akad. Nauk Ser. Mat., 60:2 (1996), 195–220 | MR

[16] Yano K., “On a structure defined by a tensor field of type $(1,1)$ satisfying $f^{3}+f=0$”, Tensor N.S., 14 (1963), 99–109 | MR | Zbl