Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2006_21_a5, author = {Zh.-G. Wang}, title = {Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points}, journal = {Lobachevskii journal of mathematics}, pages = {73--83}, publisher = {mathdoc}, volume = {21}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/} }
TY - JOUR AU - Zh.-G. Wang TI - Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points JO - Lobachevskii journal of mathematics PY - 2006 SP - 73 EP - 83 VL - 21 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/ LA - en ID - LJM_2006_21_a5 ER -
Zh.-G. Wang. Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 73-83. http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/
[1] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR
[2] C.-Y. Gao, “A subclass of close-to-convex functions”, J. Changsha Communications Univ., 10 (1994), 1–7 | DOI | MR
[3] C.-Y. Gao and S.-Q. Zhou, “A new subclass of close-to-convex functions”, Soochow J. Math., 31 (2005), 41–49 | MR | Zbl
[4] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992 | MR
[5] J. Sokół, “On a certain subclass of the class of close-to-convex functions”, Proc. of Inter. Conf. Complex Analisis and Generalized Functions, Varna, 1991, 276–282 | MR
[6] J. Sokół, “Some remarks on the class of functions starlike with respect to symmetric points”, Folia Sci. Univ. Tech. Resov., 73 (1990), 79–91 | MR
[7] J. Stankiewicz, “Some remarks on functions starlike with respect to symmetric points”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 19 (1970), 53–59 | MR
[8] K. I. Noor, “On quasi-convex functions and related topics”, Internat. J. Math. Math. Sci., 10 (1987), 241–258 | DOI | MR | Zbl
[9] K. Sakaguchi, “On certain univalent mapping”, J. Math. Soc. Japan, 11 (1959), 72–75 | MR | Zbl
[10] M.-S. Liu, “On a subclass of $p$-valent close-to-convex functions of order $\beta$ and type $\alpha$”, J. Math. Study, 30 (1997), 102–104 | MR | Zbl
[11] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983 | MR | Zbl
[12] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, “Close-to-convexity, starlikeness, and convexity of certain analytic functions”, Appl. Math. Lett., 15 (2002), 63–69 | DOI | MR | Zbl
[13] Z.-G. Wang, “A new subclass of quasi-convex functions with respect to $k$-symmetric points”, Lobachevskii J. Math., 19 (2005), 41–50 | MR | Zbl