Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points
Lobachevskii journal of mathematics, Tome 21 (2006), pp. 73-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the author introduce two new subclasses $\mathcal C^{(k)}(\alpha,\beta,\gamma)$ of close-to-convex functions and $\mathcal QC^{(k)}(\alpha,\beta,\gamma)$ of quasi-convex functions with respect to $k$-symmetric points. The sufficient conditions and integral representations for functions belonging to these classes are provided, the inclusion relationships and convolution conditions for these classes are also provided.
Keywords: close-to-convex functions, quasi-convex functions, differential subordination, $k$-symmetric points.
Mots-clés : Hadamard product
@article{LJM_2006_21_a5,
     author = {Zh.-G. Wang},
     title = {Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points},
     journal = {Lobachevskii journal of mathematics},
     pages = {73--83},
     publisher = {mathdoc},
     volume = {21},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/}
}
TY  - JOUR
AU  - Zh.-G. Wang
TI  - Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 73
EP  - 83
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/
LA  - en
ID  - LJM_2006_21_a5
ER  - 
%0 Journal Article
%A Zh.-G. Wang
%T Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points
%J Lobachevskii journal of mathematics
%D 2006
%P 73-83
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/
%G en
%F LJM_2006_21_a5
Zh.-G. Wang. Certain subclasses of close-to-convex and quasi-convex functions with respect to $k$-symmetric points. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 73-83. http://geodesic.mathdoc.fr/item/LJM_2006_21_a5/

[1] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR

[2] C.-Y. Gao, “A subclass of close-to-convex functions”, J. Changsha Communications Univ., 10 (1994), 1–7 | DOI | MR

[3] C.-Y. Gao and S.-Q. Zhou, “A new subclass of close-to-convex functions”, Soochow J. Math., 31 (2005), 41–49 | MR | Zbl

[4] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific, Singapore, 1992 | MR

[5] J. Sokół, “On a certain subclass of the class of close-to-convex functions”, Proc. of Inter. Conf. Complex Analisis and Generalized Functions, Varna, 1991, 276–282 | MR

[6] J. Sokół, “Some remarks on the class of functions starlike with respect to symmetric points”, Folia Sci. Univ. Tech. Resov., 73 (1990), 79–91 | MR

[7] J. Stankiewicz, “Some remarks on functions starlike with respect to symmetric points”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 19 (1970), 53–59 | MR

[8] K. I. Noor, “On quasi-convex functions and related topics”, Internat. J. Math. Math. Sci., 10 (1987), 241–258 | DOI | MR | Zbl

[9] K. Sakaguchi, “On certain univalent mapping”, J. Math. Soc. Japan, 11 (1959), 72–75 | MR | Zbl

[10] M.-S. Liu, “On a subclass of $p$-valent close-to-convex functions of order $\beta$ and type $\alpha$”, J. Math. Study, 30 (1997), 102–104 | MR | Zbl

[11] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983 | MR | Zbl

[12] S. Owa, M. Nunokawa, H. Saitoh and H. M. Srivastava, “Close-to-convexity, starlikeness, and convexity of certain analytic functions”, Appl. Math. Lett., 15 (2002), 63–69 | DOI | MR | Zbl

[13] Z.-G. Wang, “A new subclass of quasi-convex functions with respect to $k$-symmetric points”, Lobachevskii J. Math., 19 (2005), 41–50 | MR | Zbl